5 câu Trắc nghiệm Toán 10 Kết nối tri thức Tập hợp và các phép toán trên tập hợp (Vận dụng) có đáp án
32 người thi tuần này 4.6 3.7 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
A. 3987;
B. 3988;
D. 2020
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
A = {x ∈ ℝ | |x – m| ≤ 25} ⟹ A = [m – 25; m + 25]
B = {x ∈ ℝ | |x| ≥ 2020} ⟹ B = (-∞; -2020] ∪ [2020; +∞)
Để A ∩ B = ∅ thì -2020 < m – 25 và m + 25 < 2020 (1)
Khi đó (1) ⟺ ⟹ -1995 < m < 1995.
Vậy có 3989 giá trị nguyên m thỏa mãn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Số học sinh giỏi Toán hoặc Lý là:
40 – 19 = 21 (học sinh)
Số học sinh chỉ giỏi một môn Lý là:
21 – 10 = 11 (học sinh)
Số học sinh chỉ giỏi một môn Toán là:
21 – 15 = 6 (học sinh)
Số học sinh giỏi cả hai môn là:
21 – 11 – 6 = 4 (học sinh) .
Câu 3
A. 3 ≤ m < ;
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì P, Q là hai tập hợp khác rỗng nên ta có điều kiện:
-3 < m ≤
Để P\Q = ∅ ⟺ P ⊂ Q
⇔ m ≥ 3
Kết hợp với điều kiện ta có 3 ≤ m ≤ .
Câu 4
A. 20;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Gọi a, b, c theo thứ tự là số học sinh chỉ thi môn điền kinh, nhảy xa, nhảy cao.
x là số học sinh chỉ thi hai môn điền kinh và nhảy xa.
y là số học sinh chỉ thi hai môn nhảy xa và nhảy cao.
z là số học sinh chỉ thi hai môn điền kinh và nhảy cao.
Số em thi ít nhất một môn là: 45 – 7 = 38
Dựa vào biểu đồ ven ta có hệ phương trình sau:
Cộng vế với vế của (1), (2), (3) ta có: a + b + c + 2(x + y + z) + 15 = 60 (5)
Từ (4) và (5) ta có: a + b + c + 2(38 – 5 – a – b – c) + 15 = 60
⟺ a + b + c = 21.
Vậy có 21 học sinh chỉ thi một trong ba nội dung trên.
Câu 5
A. 0
B. 1
C. 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⟹ x2 + y2 ≥ 0.
Mà x2 + y2 ≤ 0 nên chỉ xảy ra khi x2 + y2 = 0 ⟺ x = y = 0.
Do đó ta suy ra M = {(0; 0)} nên M có 1 phần tử.