5 câu Trắc nghiệm Toán 10 Kết nối tri thức Tập hợp và các phép toán trên tập hợp (Vận dụng) có đáp án
52 người thi tuần này 4.6 3.6 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. 3987;
B. 3988;
D. 2020
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
A = {x ∈ ℝ | |x – m| ≤ 25} ⟹ A = [m – 25; m + 25]
B = {x ∈ ℝ | |x| ≥ 2020} ⟹ B = (-∞; -2020] ∪ [2020; +∞)
Để A ∩ B = ∅ thì -2020 < m – 25 và m + 25 < 2020 (1)
Khi đó (1) ⟺ ⟹ -1995 < m < 1995.
Vậy có 3989 giá trị nguyên m thỏa mãn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Số học sinh giỏi Toán hoặc Lý là:
40 – 19 = 21 (học sinh)
Số học sinh chỉ giỏi một môn Lý là:
21 – 10 = 11 (học sinh)
Số học sinh chỉ giỏi một môn Toán là:
21 – 15 = 6 (học sinh)
Số học sinh giỏi cả hai môn là:
21 – 11 – 6 = 4 (học sinh) .
Câu 3
A. 3 ≤ m < ;
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì P, Q là hai tập hợp khác rỗng nên ta có điều kiện:
-3 < m ≤
Để P\Q = ∅ ⟺ P ⊂ Q
⇔ m ≥ 3
Kết hợp với điều kiện ta có 3 ≤ m ≤ .
Câu 4
A. 20;
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Gọi a, b, c theo thứ tự là số học sinh chỉ thi môn điền kinh, nhảy xa, nhảy cao.
x là số học sinh chỉ thi hai môn điền kinh và nhảy xa.
y là số học sinh chỉ thi hai môn nhảy xa và nhảy cao.
z là số học sinh chỉ thi hai môn điền kinh và nhảy cao.
Số em thi ít nhất một môn là: 45 – 7 = 38
Dựa vào biểu đồ ven ta có hệ phương trình sau:
Cộng vế với vế của (1), (2), (3) ta có: a + b + c + 2(x + y + z) + 15 = 60 (5)
Từ (4) và (5) ta có: a + b + c + 2(38 – 5 – a – b – c) + 15 = 60
⟺ a + b + c = 21.
Vậy có 21 học sinh chỉ thi một trong ba nội dung trên.
Câu 5
A. 0
B. 1
C. 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⟹ x2 + y2 ≥ 0.
Mà x2 + y2 ≤ 0 nên chỉ xảy ra khi x2 + y2 = 0 ⟺ x = y = 0.
Do đó ta suy ra M = {(0; 0)} nên M có 1 phần tử.