22 câu Trắc nghiệm Toán 9: Ôn tập chương III Hình học có đáp án
39 người thi tuần này 4.6 1.8 K lượt thi 22 câu hỏi 40 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Cho ABC nội tiếp đường tròn (O; R) có độ dài các cạnh là AB = c, BC = a; CA = b kẻ , AO cắt (O) tại D. Diện tích S của ABC là:
Lời giải
Câu 2
Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa của cung AB. Lấy điểm M thuộc cung BC và điểm N thuộc tia AM sao cho AN = BM. Kẻ dây CD song song với AM. Gọi lần lượt là diện tích của tam giác CAN và tam giác BCM. (hình vẽ)
Chọn câu đúng
Lời giải
Câu 3
Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa của cung AB. Lấy điểm M thuộc cung BC và điểm N thuộc tia AM sao cho AN = BM. Kẻ dây CD song song với AM. Gọi lần lượt là diện tích của tam giác CAN và tam giác BCM. (hình vẽ)
Khi đó tam giác AMN là tam giác:
Lời giải
Câu 4
Cho đường tròn (O;R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Cho biết thêm rằng R = 1. Giá trị lớn nhất của biểu thức Q = MA + MB + MC + MD là:
Lời giải
Lời giải
Câu 6
Cho tứ giác ABCD nội tiếp đường tròn tâm O bán kính bằng a. Biết rằng AC BD. Khi đó để AB + CD đạt giá trị lớn nhất thì:
Lời giải
Câu 7
Cho tam giác ABC không cân, nội tiếp đường tròn (O), BD là đường phân giác của góc . Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai là E. Đường tròn (O1) đường kính DE cắt đường tròn (O) tại điểm thứ hai là F. Khi đó đường thẳng đối xứng với đường thẳng BF qua đường thẳng BD cắt AC tại N thì:
Lời giải
Câu 8
Đầu xóm em có đào 1 cái giếng, miệng giếng hình tròn có đường kính 2cm. Xung quanh miệng giếng ngta xây 1 cái thành rộng 0,4 (m). Tính tiện tích thành giếng là:
Lời giải
Lời giải
Câu 10
Gọi M, N lần lượt là trung điểm của các cạnh AB, CD của hình chữ nhật ABCD. Biết rằng đường tròn ngoại tiếp hình chữ nhật ABCD có đường kính và sự tồn tại điểm I thuộc đoạn MN sao cho . Khi đó diện tích S của hình chữ nhật ABCD là:
Lời giải
Câu 11
Cho đường tròn (O;R) và một điểm M nằm ở ngoài đường tròn sao cho MO = 2R. Đường thẳng d đi qua M, tiếp xúc với đường tròn (O;R) tại A. Giả sử . Kẻ hai đường kính AB, CD khác nhau của (O;R). Các đường thẳng BC, BD cắt đường thẳng d lần lượt tại P, Q. Khi đó:
Lời giải
Câu 12
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax và By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt tại C và D. Khi đó độ dài AC + BD nhỏ nhất khi:
Lời giải
Câu 13
Cho hai đường tròn và có bán kính bằng R cắt nhau tại hai điểm A, B. Qua A vẽ cát tuyến cắt hai đường tròn và thứ tự tại E và F. . Khi đó diện tích S phần giao của hai đường tròn và là:
Lời giải
Câu 14
Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Trên Ax lấy điểm M rồi kẻ tiếp tuyến MP cắt By tại N. Khi đó tỉ số trong trường hợp là:
Lời giải
Câu 15
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O; R). Gọi D là trung điểm của AC; tia BD cắt tiếp tuyến tại A với đường tròn (O) tại điểm E; EC cắt (O) tại F. Giả sử rằng DF // BC. Khi đó
Lời giải
Câu 16
Cho A là điểm cố định trên đường tròn (O; R). Gọi A và AC là hai dây cung thay đổi trên đường tròn (O) thỏa mãn . Khi đó vị trí của B, C trên (O) để diện tích ABC lớn nhất là:
Lời giải
Câu 17
Cho đường tròn (O; R), đường kính AB cố định, đường kính CD thay đổi. Các tia BC, BD cắt tiếp tuyến của đường tròn (O) tại A lần lượt tại E, F. Khi CD thay đổi. Giá trị nhỏ nhất của EF theo R là:
Lời giải
Câu 18
Cho tam giác đều ABC có cạnh bằng 1, nội tiếp trong đường tròn tâm O. Đường cao AD của tam giác ABC cắt đường tròn tại điểm H. Diện tích phần giới hạn bởi cung nhỏ BC và hình BOCH là:
Lời giải
Câu 19
Cho đường tròn (O;R), đường kính AB cố định, đường kính CD thay đổi (CD AB). Các tia BC, BD cắt tiếp tuyến của đường tròn (O) tại A lần lượt tại E, F. Tứ giác ADCEF là:
Lời giải
Câu 20
Cho đường tròn (O;R), đường kính AB cố định, đường kính CD thay đổi (CD AB). Các tia BC, BD cắt tiếp tuyến của đường tròn (O) tại A lần lượt tại E, F. Khi CD thay đổi, giá trị nhỏ nhất của EF theo R là:
Lời giải
Câu 21
Cho BC là một dây cung của đường tròn (O;R), . Điểm A di động trên cung lớn BC sao cho O luôn nằm trong tam giác ABC. Các đường cao AD, BE, CF của tam giác ABC đồng quy tại H. Chọn kết luận sai
Lời giải
Câu 22
Cho BC là một dây cung của đường tròn (O;R), . Điểm A di động trên cung lớn BC sao cho O luôn nằm trong tam giác ABC. Các đường cao AD, BE, CF của tam giác ABC đồng quy tại H. Kẻ đường kính AK của đường tròn (O;R). Khi đó BHCK là:
Lời giải
367 Đánh giá
50%
40%
0%
0%
0%