Bài tập theo tuần Toán 9 - Tuần 28

39 người thi tuần này 4.6 861 lượt thi 24 câu hỏi 30 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho hình vuông có cạnh là 5cm nội tiếp đường tròn (O). Hãy tính chu vi và đường tròn (O) và diện tích hình tròn (O)

Lời giải

Cho hình vuông có cạnh là 5cm nội tiếp đường tròn (O). Hãy tính chu vi và (ảnh 1)

Áp dụng định lý Pytago

BD=AB2+AD2=52+52=52R=BD2=522Chu  vi  O=2πR=2π.522=52πcmSO=πR2=π5222=252πcm2

Câu 2

Cho tam giác ABC nội tiếp đường tròn (O; 3cm). Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OA, OC và cung nhỏ AC khi ABC=600

Lời giải

Cho tam giác ABC nội tiếp đường tròn (O; 3cm). Tính diện tích hình quạt tròn (ảnh 1)
Squat(AOC)=πR2n360=π.32.AOC36001

Ta có : AOC=2ABC (góc nội tiếp và góc ở tâm cùng chắn 1 cung)

AOC=2.600=1200, thay vào (1)

SquatAOC=π.9.12003600=3πcm2

Câu 3

Cho đường tròn (O; R) đường kính AB cố định. Gọi M là trung điểm đoạn OB. Dây CD vuông góc với AB tại M. Điểm E chuyển động trên cung lớn CDEA. Nối AE cắt CD tại K. Nối BE cắt CD tại H.

a) Chứng minh 4 điểm B, M, E, K thuộc một đường tròn

b) Tính theo R diện tích hình quạt tròn giới hạn bởi OB, OC và cung nhỏ BC.

Lời giải

Cho đường tròn (O; R) đường kính AB cố định. Gọi M là trung điểm đoạn OB (ảnh 1)

a) Ta có AEB=900 (góc nội tiếp chắn nửa đường tròn)

KEB=KMB=900 Tứ giác BMEK có đỉnh M, E liên tiếp cùng nhìn BK dưới 1 góc vuông nên BMEK là tứ giác nội tiếp

B,M,E,K cùng thuộc một đường tròn

b) Ta có AMCD tại trung điểm M của CD (tính chất đường kính – dây cung)

CODB có hai đường chéo vuông góc tại trung điểm mỗi đườngCODB là hình thoi

OC=CB=OB=RCOB đều

COB=600SquatBOC=πR2.60360=πR26(dvdt)

Câu 4

Tính diện tích một hình quạt tròn có bán kính 6cm và số đo cung là 720

Lời giải

Squat=πR2n360=π.6.72360=6π5(dvdt)

Câu 5

Cho đường tròn (O) bán kính R. Vẽ hai đường kính AB, CD của đường tròn (O) vuông góc với nhau. Trên AO lấy E sao cho OE=13OA,tia CE cắt đường tròn (O) tại M

a) Chứng minh tứ giác MEOD nội tiếp đường tròn

b) Tính CE theo R

c) Gọi I là giao điểm của CM và AD. Chứng minh OIAD

d) Tính diện tích hình tạo bởi dây AD và cung nhỏ AD của đường tròn (O)

Lời giải

Cho đường tròn (O) bán kính R. Vẽ hai đường kính AB, CD của đường tròn (O) (ảnh 1)

a) Ta có CMD=900 (góc nội tiếp chắn nửa đường tròn)

Nên tứ giác MEOD có : OME+EOD=900+900=1800

Nên MEOD là tứ giác nội tiếp

B) OE=13OA=R3

ΔCOE vuông tại O nên

CE=CO2+OE2Pytago=R2+R32=R103

c) Xét ΔCAD có AO là đường trung tuyến mà OE=13OAAE=23AO

E là trọng tâm ΔCAD CI lả đường trung tuyến

I là trung điểm dây ADOIAD (đường kính dây cung)

d) SquatAOD=πR2n360=πR2.9003600=πR24(dvdt)

 

Câu 6

Giải phương trình sau bằng công thức nghiệm thu gọn:

3x26x+1=0

Lời giải

3x26x+1=0a=3,b=6,c=1b'=3Δ'=323.1=6

Nên phương trình có hai nghiệm :

x1=3+63x2=363

Câu 7

Giải phương trình sau bằng công thức nghiệm thu gọn:

x2+43x+12=0

Lời giải

x2+43x+12=0a=1,b=43,c=12b'=23Δ'=2321.12=0

Nên phương trình có nghiệm kép

x=23

Câu 8

Giải phương trình sau bằng công thức nghiệm thu gọn:

25x210x+1=0

Lời giải

25x210x+1=0a=25,b=10,c=1b'=5Δ'=5225.1=0

Nên phương trình có nghiêm kép :

x=525=15

Câu 9

Giải phương trình sau bằng công thức nghiệm thu gọn:

13x210x+5=0

Lời giải

13x210x+5=0a=13,b=10,c=5b'=5Δ'=5213.5=40<0

Nên phương trình vô nghiệm

Câu 10

Giải phương trình sau bằng công thức nghiệm thu gọn:
x26x+8=0

Lời giải

x26x+8=0a=1,b=6,c=8b'=3Δ'=321.8=1>0

Nên phương trình có hai nghiệm phân biệt :

x1=311=2x2=3+12=4

Câu 11

Giải phương trình sau bằng công thức nghiệm thu gọn:

3x24x+2=0

Lời giải

3x24x+2=0a=3,b=4,c=2b'=2Δ=223.2=2<0

Nên phương trình vô nghiệm

Câu 12

Giải phương trình sau bằng công thức nghiệm thu gọn:
x216x+64=0

Lời giải

x216x+64=0a=1,b=16,c=64b'=8Δ'=821.64=0

Nên phương trình có nghiệm kép

x=81=8

Câu 13

Giải phương trình sau bằng công thức nghiệm thu gọn:
5x26x1=0

Lời giải

5x26x1=0a=5,b=6,c=1b'=3Δ'=325.1=14

Nên phương trình có hai nghiệm phân biệt :

x1=3+142x2=3142

Câu 14

Giải phương trình sau bằng công thức nghiệm thu gọn:

3x2+14x8=0

Lời giải

3x2+14x8=0a=3,b=14,c=8b'=7Δ'=723.8=25>0

Nên phương trình có hai nghiệm phân biệt :

x1=7+253=23x2=7253=4

Câu 15

Giải phương trình sau bằng công thức nghiệm thu gọn:

7x2+4x3=0

Lời giải

7x2+4x3=0a=7,b=4,c=3b'=2Δ'=227.3=17<0

Nên phương trình vô nghiệm

Câu 16

Giải phương trình sau bằng công thức nghiệm thu gọn:

9x2+6x+1=0

Lời giải

9x2+6x+1=0a=9,b=6,c=1b'=3Δ=329.1=0

Nên phương trình có nghiệm kép

x=39=13

Câu 17

Giải phương trình sau bằng công thức nghiệm thu gọn:
x212x+32=0

Lời giải

x212x+32=0a=1,b=12,c=32b'=6Δ'=621.32=4

Nên phương trình có hai nghiệm phân biệt :

x1=6+41=8x2=641=4

Câu 18

Giải phương trình sau bằng công thức nghiệm thu gọn:

x26x16=0

Lời giải

x26x16=0a=1,b=6,c=16b'=3Δ=321.16=25>0

Nên phương trình có hai nghiệm phân biệt :

x1=3+25=8x2=325=2

Câu 19

Giải phương trình sau bằng công thức nghiệm thu gọn:
4x24x7=0

Lời giải

4x24x7=0a=4,b=4,c=7b'=2Δ'=224.7=32

Nên phương trình có hai nghiệm

x1=2+324=1+222x2=2324=1222

Câu 20

Với giá trị nào của m thì phương trình có hai nghiệm phân biệt :

x22m+3x+m2+3=0

Lời giải

x22m+3x+m2+3=0Δ'=m+32m2+3=6m+6

Để phương trình có hai nghiệm phân biệt thì : 6m+6>0m>1

Câu 21

Với giá trị nào của m thì phương trình có hai nghiệm phân biệt :

m+1x2+4mx+4m1=0

Lời giải

m+1x2+4mx+4m1=0m1Δ'=2m2m+14m1=3m+1

Để phương trình có hai nghiệm phân biệt 3m+1>0m<13

Vậy m<13,m1 thì phương trình có hai nghiệm phân biệt.

Câu 22

Với giá trị nào của m thì phương trình có nghiệm kép :

5x2+2mx2m+15=0

Lời giải

5x2+2mx2m+15=0Δ'=m252m+15=m2+10m75

Để phương trình có nghiệm kép Δ'=0m2+10m75=0m=5m=15

Câu 23

Với giá trị nào của m thì phương trình có nghiệm kép :
mx24m1x8=0

Lời giải

mx24m1x8=0m0

Δ'=2m12m.8=4m2+4>0 (với mọi m)

Nên với mọi m phương trình không có nghiệm kép

Câu 24

Cho a, b, c là ba số thỏa a > b > c > 0 và a + b + c = 12. Chứng minh rằng trong ba phương trình sau :

          x2+ax+b=01x2+bx+c=02x2+cx+a=03

Có một phương trình có nghiệm, một phương trình vô nghiệm

Lời giải

Từ a > b > c > 0 và a + b + c = 12

3a>a+b+c=12>3ca>4>c

Δ1=a24b>4a4b=4ab>0 nên phương trình x2+ax+b=0 có nghiệm

Δ2=c24a<4c4a=4ca<0 nên phương trình x2+cx+a=0 vô nghiệm.

4.6

172 Đánh giá

50%

40%

0%

0%

0%