5 câu Trắc nghiệm Toán 9 Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung có đáp án (Vận dụng)

31 người thi tuần này 4.6 1.9 K lượt thi 5 câu hỏi 20 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Xét (O) có MBA^=BCA^ (góc tạo bởi tiếp tuyến và dây cung AB bằng góc nội tiếp chắn cung AB)

Suy ra MBA đồng dạng với MCB (g – g) => MBMC=BACB

Xét (O) có MDA^=DCA^ (góc tạo bởi tiếp tuyến và dây cung AB bằng góc nội tiếp chắn cung AD)

Suy ra MAD đồng ý MDC (g – g)  => MDMC=ADCD

Theo tính chất hai tiếp tuyến cắt nhau thì MB = MD

nên ADDC=ABBC=12

Đáp án cần chọn là: C

Lời giải

Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc Gọi I là điểm trên cung AC (ảnh 1)

+) Ta có:  CIM^=12IOC^ (góc tạo bởi tiếp tuyến và dây cung với góc ở tâm chắn cung IC)  => IOC^=2CIM^

Lại có OCI^=CIM^+CMI^=2CIM^ (do CMI cân tại C)

Do đó OIC đều (vì OIC^=IOC^=OCI^) => IOM^ = 60o

+) Xét OIM vuông tại I có:

cos IOM^ = OIOM=ROM=12 => OM = 2R

Đáp án cần chọn là: B

Lời giải

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B Một đường thẳng tiếp xúc với (O) tại C, (ảnh 1)

+) Xét (O) ta có: BAC^=BCD^ (cùng chắn cung CB)

Xét (I) có: CAB^=EDC^ (cùng chắn cung CE)

=> BCD^=EDC^ =>  ED // BC (1)

+) Xét (O’) có: BAD^=BDC^ (cùng chắn cung BD)

Xét (I) có: EAD^=ECD^ (cùng chắn cung ED)

=> ECD^=BDC^ => CE // BD (2)

Từ (1) và (2) suy ra BDEC là hình bình hành

Đáp án cần chọn là: B

Lời giải

Cho tam giác giác nhọn ABC (AB < AC) nội tiếp (O; R) Gọi BD, CE là hai đường cao của tam giác. (ảnh 1)

Xét (O) có IAC^=ABC^ (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung AC)

Xét hai tam giác vuông IAC và EBC có IAC^=ABC^ (cmt)

IAC đồng dạng với EBC (g – g)  => IAEB=ACBC

Tương tự ta có AKB đồng dạng với CDB (g – g)   

=> CDAK=BCAB

Suy ra  IAEB.CDAK=ACBC.BCABIAEB.CDAK=ACAB

Đáp án cần chọn là: A

Lời giải

Cho nửa đường tròn (O); đường kính AB và một điểm C trên nửa đường tròn . Gọi D là một điểm (ảnh 1)

Xét (O) có ICB^=CAB^ (hệ quả) mà BFD^=BAC^ (Cùng phụ với ABC^)
Nên ICF^=BFD^ICF^=CFI^ suy ra ICF cân tại I => IF = IC (*)

Lại có ICE^+ICF^ = 90o => ICE^+CAB^ = 90o mà CAB^+AED^ = 90o

=> CEI^=ECI^ => ICE cân tại I

Nên IE = IC (**)

Từ (*) và (**) suy ra IE = IF =  

Đáp án cần chọn là: A

4.6

382 Đánh giá

50%

40%

0%

0%

0%