Dạng 1: Tứ giác có tổng hai góc đối nhau bằng 180 độ có đáp án

46 người thi tuần này 4.6 3 K lượt thi 6 câu hỏi 50 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh BEFI là tứ giác nội tiếp đường tròn. (ảnh 1)

Tứ giác BEFI  có:

            BIF = 900 (giả thiết);

             BEF = BEA = 900(góc nội tiếp chắn nửa đường tròn).

Suy ra tứ giác BEFI  nội tiếp đường tròn đường kính BF.

Câu 3

Chứng minh FC.FA = FB.FD.

Lời giải

Xét FCB FDA có: FCB = FDA = 90o ;

                                                CFD chung.

=> FCB và FDA (g.g) => FCFD=FBFA (hai cạnh tương ứng).

=> FC.FA = FB.FD.

Lời giải

Gọi H là giao điểm của EF và AB. Vì E là trực tâm của ABF nên FH AB.

OCA cân tại O nên OCA = OAC (hai góc ở đáy).

Ta có CI là đường trung tuyến của tam giác vuông CEF nên CIB = CF. Do đó ICF cân tại I nên ICF = IFC (hai góc ở đáy).

=> ICF + OCA = IFC + OAC = 90° (vì HAF vuông tại H).

=> ICO = 90° => IC OC. Vậy IC là tiếp tuyến của đường tròn (O).

Lời giải

d) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào? (ảnh 1)

Gọi T là điểm chính giữa của cung AB không chứa điểm C (T cố định).

Khi đó OT AB  nên OT // IE.

Chứng minh tương tự câu c, ta có được ID là tiếp tuyến của đường tròn (O).

Do đó tứ giác ICOD là hình chữ nhật. Lại có OC = OD nên tứ giác này là hình vuông cạnh R.

Tam giác ECF vuông tại C có CI là trung tuyến nên IE = CI = R.

Ta có: OT // IE và OT = IE = R nên IETO là hình bình hành.

Do vậy TE = OI = R2.

Vậy E thuộc đường tròn tâm T bán kính R2.

4.6

606 Đánh giá

50%

40%

0%

0%

0%