Trắc nghiệm Chuyên đề toán 9 Chuyên đề 7: Tứ giác ngoại tiếp, Đường tròn nội tiếp có đáp án

37 người thi tuần này 4.6 0.9 K lượt thi 8 câu hỏi 30 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Chứng minh định lí: “Nếu một tứ giác ABCD có tổng các cạnh đối bằng  (ảnh 1)

Ta chỉ cần chứng minh các tia phân giác của ba góc \[A,B,D\] gặp nhau tại một điểm. Xét hai trường hợp:

Trường hợp 1: Nếu \[AB = BC\] thì từ giả thiết suy ra \[CD = AD\].

Xét \[\Delta ABD\]\[\Delta CBD\]\[AB = BC\], \[AD = DC\]\[BD\] chung nên \[\Delta ABD = \Delta CBD\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].

Do đó \[BD\] là đường phân giác của các góc \[B\]\[D\].

Chứng minh định lí: “Nếu một tứ giác ABCD có tổng các cạnh đối bằng  (ảnh 2)

Gọi \[O\] là giao điểm của tia phân giác góc \[A\] với \[BD\]. Suy ra \[BO,DO\] là các tia phân giác của các góc \[B\]\[D\].

Trường hợp 2: Nếu \[AB \ne BC\], giả sử \[AB > BC\], suy ra \[DA > DC\].

Lấy điểm \[M\] trên \[AB\], điểm \[N\] trên \[AD\] sao cho \[BM = BC,DN = DC\].

Từ giả thiết suy ra \[AM = AN\]. Các đường phân giác của các góc \[A,B,D\] chính là các đường trung trực của tam giác \[CMN\] nên chúng gặp nhau tại một điểm \[O\].

Vậy điểm \[O\] là tâm của đường tròn nội tiếp tứ giác \[ABCD\].

Lời giải

Cho đường tròn (O) nội tiếp tam giác ABC. D, E, F lần lượt là các tiếp điểm AB (ảnh 1)

\[\left( O \right)\] nội tiếp tam giác \[ABC\] nên các cạnh \[AB,BC,AC\] là các tiếp tuyến của đường tròn \[\left( O \right)\].

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

            \[AD = AF,{\rm{ }}BD = BE,{\rm{ }}CE = CF\].

Khi đó \[VP = AB + AC - BC\]

                  \[ = \left( {AD + BD} \right) + \left( {CF + FA} \right) - \left( {BE + CE} \right) = AD + AF = 2AD = VT\].

Vậy \[2AD = AB + AC - BC\].

Lời giải

Chứng minh tương tự câu a) ta cũng có các hệ thức sau:

            \[2BD = 2BE = AB + BC - AC;{\rm{ }}2CE = 2CF = BC + AC - AB\]

Ví dụ 3: Cho hình thang \[ABCD\] vuông tại hai đỉnh \[A\]\[D\], ngoại tiếp đường tròn \[\left( O \right)\].

Tìm độ dài các cạnh \[AB\]\[CD\], biết rằng \[OB = 6{\rm{ cm}}\]\[OC = 8{\rm{ cm}}\].

Giải chi tiết

Do \[ABCD\] ngoại tiếp đường tròn \[\left( O \right)\] nên các cạnh của hình thang \[ABCD\] là tiếp tuyến của \[\left( O \right)\].

Cho đường tròn (O) nội tiếp tam giác ABC. Tìm các hệ thức tương tự hệ thức ở bài trước (ảnh 1)

Theo tính chất của hai tiếp tuyến cắt nhau suy ra \[BO\]\[CO\] lần lượt là tia phân giác của góc \[\widehat {ABC},{\rm{ }}\widehat {BCD}\].

Xét \[\Delta BOC\] có: \[\widehat {OBC} + \widehat {OCB} = \frac{{\widehat {ABC} + \widehat {BCD}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

Suy ra \[\Delta BOC\] vuông \[O\]. Áp dụng định lí Pitago trong tam giác vuông này ta có:

            \[B{C^2} = O{B^2} + O{C^2} = {6^2} + {8^2} = 100 \Rightarrow BC = 10{\rm{ cm}}\].

Giả sử đường tròn \[\left( O \right)\] tiếp xúc với \[BC\] tại \[K\], suy ra \[OK \bot BC\].

Áp dụng hệ thức lượng trong tam giác vuông \[OBC\], với \[OK\] là đường cao, ta có:

            \[\frac{1}{{O{K^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}} = \frac{1}{{{6^2}}} + \frac{1}{{{8^2}}} = \frac{{25}}{{576}} \Rightarrow OK = \frac{{24}}{5}{\rm{ cm}}\].

Gọi \[E,F\] lần lượt là tiếp điểm của \[AB\]\[CD\] với đường tròn \[\left( O \right)\].

Suy ra \[OE = OK = \frac{{24}}{5}\] (bán kính đường tròn \[\left( O \right)\]).

Kẻ \[BH \bot CD\left( {H \in CD} \right)\]. Ta thấy: \[BH = EF = 2OK = \frac{{48}}{5}{\rm{ cm}}\].

Tương tự, áp dụng định lí Pitago trong tam giác vuông \[HBC\] ta được \[HC = \frac{{14}}{5}{\rm{ cm}}\].

Ta có \[OE \bot AB\] (do \[AB\] là tiếp tuyến của \[\left( O \right)\]). Mặt khác \[AO\] là tia phân giác của góc \[\widehat {DAB}\]

\[ \Rightarrow \widehat {OAE} = 45^\circ \].

Suy ra tam giác \[AOE\] vuông cân \[ \Rightarrow AE = OE = \frac{{24}}{5}{\rm{ cm}}\].

Áp dụng định lí Pitago trong tam giác vuông \[OEB\] ta được \[BE = \frac{{18}}{5}{\rm{ cm}}\].

Vậy \[AB = AE + EB = \frac{{24}}{5} + \frac{{18}}{5} = \frac{{42}}{5}{\rm{ cm}}\].

        \[CD = DH + HC = AB + HC = \frac{{42}}{5} + \frac{{14}}{5} = \frac{{56}}{5}{\rm{cm}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

186 Đánh giá

50%

40%

0%

0%

0%