Dạng 1: Các bài toán tính toán có đáp án

36 người thi tuần này 4.6 1.7 K lượt thi 6 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Media VietJack

Áp dụng hệ thức lượng cho tam giác vuông ABC ta có:

AC2=CH.CB102=8(8+x)x=4,5.

Lại có AB2=BH.BCy2=4,5(8+4,5)y=7,5.

Vậy x=4,5y=7,5.

Lời giải

Theo định nghĩa, tanB=ACAB nên từ giả thiết ta có: AC6=512AC=2,5  cm.

Áp dụng định lý Pitago cho tam giác ABC vuông tại A ta có:

BC2=AB2+AC2=62+2,52=42,25BC=6,5  cm.

Vậy AC=2,5  cmBC=6,5  cm.

Lời giải

Media VietJack

Áp dụng định lý Pitago cho tam giác vuông ABC ta có:

BC2=AB2+AC2AC2=5232AC=4  cm.

Theo định nghĩa:

sinB=ACBC=45;  cosB=ABBC=35;

tanB=ACAB=43;  cotB=ABAC=34.

Lời giải

Media VietJack

Diện tích hình thang được tính bởi công thức

S=12h(AB+CD).

(Trong đó: h là chiều cao của hình thang).

Đối với bài tập này, chúng ta đã biết độ dài hai cạnh đáy. Do vậy, ta cần tìm chiều cao.

Kẻ AHCD,  BKCD.

Do ABCD là hình thang cân nên HK=AB=12  cm;

DH=KC=CDAB2=3  cm.

Trong tam giác AHD vuông tại H ta có:

tanD=AHDHtan75°=AH3AH11,196  cm.

Từ đó, SABCD=12AH.(AB+CD)=12.11,196.(12+18)=167,94  cm2.

Ÿ Để tính chu vi hình thang, ta cần tính AD.

Áp dụng định lý Pitago cho tam giác vuông ADH ta có:

AD2=AH2+HD2134,35, suy ra AD11,59  cm.

Ngoài ra, ta cũng có thể sử dụng công thức tỉ số lượng giác của góc trong tam giác vuông ADH để tính AD.

Do đó, chu vi hình thang cân ABCD là:

AB+BC+CD+DA=12+11,59+18+11,59=53,18  cm.

Lời giải

Media VietJack

a) Giải tam giác là tìm độ dài các cạnh và số đo các góc của tam giác đó.

Ta có 45=cosC=ACBC=12BCBC=15  cm.

Áp dụng định lý Pitago ta có:

AB2=BC2AC2=81AB=9  cm.

Sử dụng máy tính bỏ túi với cosC=45 ta được C^37°.

Tam giác ABC vuông tại A nên B^=90°C^53°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

350 Đánh giá

50%

40%

0%

0%

0%