15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hệ bất phương trình bậc nhất hai ẩn có đáp án
34 người thi tuần này 4.6 1.4 K lượt thi 15 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.
Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.
Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.
Vậy ta chọn đáp án A.
Lời giải
Đáp án đúng là: A
+ Vì –0 + 3.0 = 0 và 2.0 = 0 nên cặp số (0; 0) là nghiệm của cả hai bất phương trình –x + 3y ≥ 0 và 2x ≤ 0.
Suy ra điểm O(0; 0) thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - x + 3y \ge 0\\2x \le 0\end{array} \right.\).
Vậy khẳng định A là đúng.
+ Vì –1 + 3.0 = –1 < 0 và 2. (–1) = –2 < 0 nên cặp số (1 ; 0) không là nghiệm của bất phương trình –x + 3y ≥ 0.
Suy ra điểm M(1 ; 0) không thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - x + 3y \ge 0\\2x \le 0\end{array} \right.\).
Vậy khẳng định B là sai.
+ Vì –0 + 3. (–1) = –3 < 0 và 2. 0 = 0 nên cặp số (0; –1) không là nghiệm của bất phương trình –x + 3y ≥ 0.
Suy ra điểm N(0 ; –1) không thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - x + 3y \ge 0\\2x \le 0\end{array} \right.\).
Vậy khẳng định C là sai.
+ Vì –1 + 3. 1 = 2 > 0 và 2. 1 = 2 > 0 nên cặp số (1; 1) không là nghiệm của bất phương trình 2x ≤ 0.
Suy ra điểm P(1; 1) không thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - x + 3y \ge 0\\2x \le 0\end{array} \right.\).
Vậy khẳng định D là sai.
Vậy ta chọn đáp án A.
>>Lời giải
Đáp án đúng là: C
+ Vì \(\left\{ \begin{array}{l}x + y \ge - 1\\{y^2} - 1 \le 0\end{array} \right.\) chứa bất phương trình bậc hai y2 – 1 ≤ 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định A đúng.
+ Vì \(\left\{ \begin{array}{l}x \ge 1 + y\\5x + y < 0\end{array} \right.\) chứa hai bất phương trình x ≥ 1 + y và 5x + y < 0 đều là các bất phương trình bậc nhất hai ẩn, nên hệ này là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định B đúng.
+ Vì \(\left\{ \begin{array}{l}x + 1 + y > 0\\{x^2} + y < 0\end{array} \right.\) chứa bất phương trình bậc hai x2>
> + y < 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.Do đó khẳng định C sai.
+ Vì \(\left\{ \begin{array}{l}\frac{1}{2}x + 2y < 7\\x + 3y \le 0\end{array} \right.\)chứa hai bất phương trình \(\frac{1}{2}x + y < 7\) và x + 3y ≤ 0 đều là các bất phương trình bậc nhất hai ẩn nên hệ này là hệ bất phương trình bậc nhất hai ẩn.
Do đó khẳng định D đúng.
Vậy ta chọn đáp án C.
>>Lời giải
Đáp án đúng là: B
+ Ta có : –0 + 2.1 = 2 và 2.0 + 1 = 1 > –1.
Do đó cặp số (0; 1) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (0; 1) không là nghiệm của hệ bất phương trình\(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\).
Suy ra điểm M(0; 1) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\)
+ Ta có : –(–1) +2.1 = 3 > 2 và 2.(–1) + 1 = –1.
Do đó cặp số (–1; 1) là nghiệm của cả hai bất phương trình –x + 3y ≥2 và 2x + y ≤ –1.
Vậy nên, cặp số (–1; 1) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\).
Suy ra điểm N(–1; 1) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\).
+ Ta có : –(–1) + 2.4 = 9 > 2 và 2.(–1) + 4 = 2 > –1.
Do đó cặp số (–1; 4) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (–1; 4) không là nghiệm của hệ bất phương trình\(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\).
Suy ra điểm P(–1; 4) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\)
+ Ta có : –1 + 2.3 = 5 > 2 và 2.1 + 3 = 5 > –1.
Do đó cặp số (1; 3) không là nghiệm của bất phương trình 2x + y ≤ –1.
Vậy nên cặp số (1; 3) không là nghiệm của hệ bất phương trình\(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\).
Suy ra điểm Q(1; 3) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\)
Vậy điểm N(–1; 1) thuộc miền nghiệm của hệ bất phương trình đã cho nên ta chọn đáp án B.
Lời giải
Đáp án đúng là: C
+ Ta có : –3. (–1) + 2 = 5 > –2 và –1 + 2.2 = 3 > 1.
Do đó cặp số (–1 ; 2) không là nghiệm của bất phương trình x + 2y ≤ 1.
Vậy nên cặp số (–1 ; 2) không là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
Suy ra điểm M(–1 ; 2) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
+ Ta có : –3. 0 + (–1)= –1 > –2 và 0 + 2. (–1) = –2 < 1.
Do đó cặp số (0; –1) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.
Vậy nên cặp số (0; –1) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
Suy ra điểm M(0; –1) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
+ Ta có : –3. 0 + 0 = 0 > –2 và 0 + 2.0 = 0 < 1.
Do đó cặp số (0 ; 0) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.
Vậy nên cặp số (0 ; 0) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
Suy ra điểm O(0 ; 0) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
Vậy hai điểm M(0; –1) và O(0 ; 0) thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).
Do đó ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
283 Đánh giá
50%
40%
0%
0%
0%