5 câu Trắc nghiệm Toán 10 Kết nối tri thức Bất phương trình bậc nhất hai ẩn (Vận dụng) có đáp án
19 người thi tuần này 4.6 1.9 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Giả sử đường thẳng (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng có dạng:
y = a’x + b’. Dễ dàng nhận thấy đường thẳng (d) đi qua hai điểm có tọa độ là và (0; 1). Ta có hệ phương trình
y = – 2x + 1
Vậy đường thẳng có phương trình 2x + y = 1.
Xét điểm O(0; 0), có: 2.0 + 0 = 0 < 1.
Vì O(0; 0) không thuộc miền nghiệm của bất phương trình. Vậy phần nửa mặt phẳng không bị gạch biểu diễn miền nghiệm của bất phương trình 2x + y > 1
Suy ra: a = 2; b = 1; c = 1
⇒ P = a2 + b2 – 2c = 22 + 12 – 2.1 = 3.
Vậy P = 3.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Giả sử đường thẳng (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng có dạng:
y = a’x + b’. Dễ dàng nhận thấy đường thẳng (d) đi qua hai điểm có tọa độ là (– 1; 0) và (0; 2). Ta có hệ phương trình
y = 2x + 2
Suy ra đường thẳng có phương trình – 2x + y = 2.
Xét điểm O(0; 0), có: – 2.0 + 0 = 0 < 2.
Vì O(0; 0) thuộc miền nghiệm của bất phương trình. Do đó phần nửa mặt phẳng không bị gạch biểu diễn miền nghiệm của bất phương trình – 2x + y < 2 2x – y > – 2
Ta có a – 1 = 2 a = 3; 2b + 3 = – 1 b = – 2
Vậy a = 3 và b = – 2.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Giả sử đường thẳng (∆) chia mặt phẳng tọa độ thành hai nửa mặt phẳng có dạng:
y = a’x + b’. Dễ dàng nhận thấy đường thẳng (∆) đi qua hai điểm có tọa độ là (– 2; 0) và (0; – 2). Ta có hệ phương trình
y = – x – 2
Vậy đường thẳng có phương trình x + y = – 2
Xét điểm O(0; 0), có: 0 + 0 = 0 > – 2.
Vì O(0; 0) thuộc miền nghiệm của bất phương trình. Vậy phần tô đậm biểu diễn miền nghiệm của bất phương trình x + y > – 2 (không kề đường thẳng ∆)
Ta có a = 1; b = 1; c = – 2
Xét hệ phương trình A: .
Xét hệ phương trình B:
Xét hệ phương trình C:
Xét hệ phương trình D:
Vậy chọn đáp án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Giả sử đường thẳng (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng có dạng:
y = a’x + b’. Dễ dàng nhận thấy đường thẳng (d) đi qua hai điểm có tọa độ là (3; 0) và (0; 2). Ta có hệ phương trình
y = x + 2 ⇔ 2x + 3y = 6
Suy ra đường thẳng d có phương trình 2x + 3y = 6.
Xét điểm O(0; 0), ta có: 2.0 + 3.0 = 0 < 6.
Vì O(0; 0) không thuộc miền nghiệm của bất phương trình. Vậy phần nửa mặt phẳng không bị gạch biểu diễn miền nghiệm của bất phương trình 2x + 3y ≥ 6
Ta có a = 2; b = 3; c = 6
Suy ra a < b < c.
Vậy chọn đáp án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Giả sử đường thẳng (d) chia mặt phẳng tọa độ thành hai nửa mặt phẳng có dạng:
y = ax + b. Dễ dàng nhận thấy đường thẳng (d) đi qua hai điểm có tọa độ là (1; 0) và (0; 2). Ta có hệ phương trình
y = – 2x + 2
Vậy đường thẳng có phương trình 2x + y = 2.
Xét điểm O(0; 0), ta có: 2.0 + 0 = 0 < 2.
Vì O(0; 0) không thuộc miền nghiệm của bất phương trình. Vậy phần nửa mặt phẳng không bị gạch biểu diễn miền nghiệm của bất phương trình 2x + y > 2 – 2x – y < – 2
Suy ra: m2 – 3m + 2 = – 2 ⇔ m2 – 3m + 4 = 0 có ∆ = (– 3)2 – 4.4 = – 7 < 0. Do đó phương trình vô nghiệm.
Vậy không có giá trị của m thoả mãn
388 Đánh giá
50%
40%
0%
0%
0%