5 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm (Vận dụng) có đáp án
21 người thi tuần này 4.6 2.5 K lượt thi 5 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Cánh diều Mệnh đề toán học có đáp án
7 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề (Nhận biết) có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi số có 3 chữ số cần tìm có dạng ( a ≠ 0).
Để thoả mãn yêu cầu bài toán có 3 phương án có thể xảy ra:
+ Phương án 1: a = 5
Chọn b có 9 cách chọn;
Chọn c có 9 cách chọn;
Do đó có 9.9 = 81 số
+ Phương án 2: b = 5
Chọn a có 8 cách chọn (vì a ≠ 0; a ≠ 5);
Chọn c có 9 cách chọn;
Do đó có: 9.8 =72 số.
+ Phương án 3: c = 5
Chọn a có 8 cách chọn (vì a ≠ 0; a ≠ 5);
Chọn b có 9 cách chọn;
Do đó có: 9.8 = 72 số.
Vậy có 81 + 72 + 72 = 225 số thoả mãn yêu cầu bài toán.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi n là số người tham gia buổi liên hoan (n ∈ ℕ*)
Mỗi người bắt tay n – 1 người còn lại nên có n(n – 1) cái bắt tay
Tuy nhiên mỗi cái như vậy được tính 2 lần nên thực tế có cái bắt tay
Do đó ta được phương trình = 28 hay n2 – n – 56 = 0 .
Vậy chỉ có 8 người tham gia buổi tiệc.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi số có 3 chữ số phân biệt là được lập từ dãy số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9
- Phương án 1: a ∈ {1; 3}⇒ a có 2 cách chọn
c ∈ {0; 2; 4; 6; 8}⇒ c có 5 cách chọn
b có 8 cách chọn
Do đó có 2. 5. 8 = 80 số
- Phương án 2: a ∈ {2; 4}⇒ a có 2 cách chọn
c ∈ {0; 6; 8}⇒ c có 3 cách chọn
b có 8 cách chọn
Do đó có 2. 3. 8 = 48 số
- Phương án 3: a = 5
+ Trường hợp 1: b = 4 thì c ∈ {0; 2; 6}, c có 3 cách chọn;
+ Trường hợp 2: b < 4 thì b ∈ {0; 1; 2; 3}.
Nếu b ∈ {0; 2} có 2 cạnh chọn và c có 4 cách chọn. Do đó có: 2.4 = 8 số.
Nếu b ∈ {1; 3} có 2 cách chọn và c có 5 cách chọn. Do đó có: 2.5 =10 số.
Như vậy có 10 + 8 + 3 = 21 số.
Vậy có 80 + 48 + 21 = 149
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ước nguyên dương của M có dạng 5a.2b với a ∈ {0; 1; 2; 3}; b ∈ {0; 1; 2; 3; 4}.
Chọn a có 4 cách chọn
Chọn b có 5 cách chọn
Vậy số M có 4.5 = 20 ước nguyên dương.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Gọi số cần tìm có dạng (a ≠ 0)
Vì là số chẵn nên d ∈ {0; 2; 4}
+ Phương án 1: d = 0
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
Như vậy có 5.4.3 = 60 số theo phương án 1
+ Phương án 2: d ∈ {2; 4}
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
Như vậy 2.4.4.3 = 96 số theo phương án 2
Vậy có 96 + 60 = 156 số tự nhiên chẵn có 4 chữ số khác nhau được tạo thành từ 6 số đã cho.