5 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm (Vận dụng) có đáp án

21 người thi tuần này 4.6 2.4 K lượt thi 5 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Có bao nhiêu số có 3 chữ số trong đó chữ số 5 chỉ xuất hiện 1 lần

Lời giải

Hướng dẫn giải

Đáp án đúng là: A      

Gọi số có 3 chữ số cần tìm có dạng abc¯ ( a ≠ 0).

Để thoả mãn yêu cầu bài toán có 3 phương án có thể xảy ra:

+ Phương án 1: a = 5

Chọn b có 9 cách chọn;

Chọn c có 9 cách chọn;

Do đó có 9.9 = 81 số

+ Phương án 2: b = 5

Chọn a có 8 cách chọn (vì a ≠ 0; a ≠ 5);

Chọn c có 9 cách chọn;

Do đó có: 9.8 =72 số.

+ Phương án 3: c = 5

Chọn a có 8 cách chọn (vì a ≠ 0; a ≠ 5);

Chọn b có 9 cách chọn;

Do đó có: 9.8 = 72 số.

Vậy có 81 + 72 + 72 = 225 số thoả mãn yêu cầu bài toán.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Gọi n là số người tham gia buổi liên hoan (n ℕ*)

Mỗi người bắt tay n – 1 người còn lại nên có n(n – 1) cái bắt tay

Tuy nhiên mỗi cái như vậy được tính 2 lần nên thực tế có n(n1)2 cái bắt tay

Do đó ta được phương trình n(n1)2  = 28 hay n2 – n – 56 = 0n=7n=8 .

Vậy chỉ có 8 người tham gia buổi tiệc.

Câu 3

Có bao nhiêu số chẵn gồm 3 chữ số phân biệt nhỏ hơn 547:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi số có 3 chữ số phân biệt là abc¯ được lập từ dãy số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9

- Phương án 1: a {1; 3} a có 2 cách chọn

c {0; 2; 4; 6; 8} c có 5 cách chọn

b có 8 cách chọn

Do đó có 2. 5. 8 = 80 số

- Phương án 2: a {2; 4} a có 2 cách chọn

c {0; 6; 8} c có 3 cách chọn

b có 8 cách chọn

Do đó có 2. 3. 8 = 48 số

- Phương án 3: a = 5

+ Trường hợp 1: b = 4 thì c {0; 2; 6}, c có 3 cách chọn;

+ Trường hợp 2: b < 4 thì b {0; 1; 2; 3}.

Nếu b {0; 2} có 2 cạnh chọn và c có 4 cách chọn. Do đó có: 2.4 = 8 số.

Nếu b {1; 3} có 2 cách chọn và c có 5 cách chọn. Do đó có: 2.5 =10 số.

Như vậy có 10 + 8 + 3 = 21 số.

Vậy có 80 + 48 + 21 = 149

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ước nguyên dương của M có dạng 5a.2b với a {0; 1; 2; 3}; b {0; 1; 2; 3; 4}.

Chọn a có 4 cách chọn

Chọn b có 5 cách chọn

Vậy số M có 4.5 = 20 ước nguyên dương.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi số cần tìm có dạng abcd¯ (a ≠ 0)

abcd¯ là số chẵn nên d {0; 2; 4}

+ Phương án 1: d = 0

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

Như vậy có 5.4.3 = 60 số theo phương án 1

+ Phương án 2: d {2; 4}

d có 2 cách chọn

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn

Như vậy 2.4.4.3 = 96 số theo phương án 2

Vậy có 96 + 60 = 156 số tự nhiên chẵn có 4 chữ số khác nhau được tạo thành từ 6 số đã cho.

4.6

473 Đánh giá

50%

40%

0%

0%

0%