Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

• Phân tích đề bài

Gọi ẩn là vận tốc xe thứ nhất, từ đó biểu diễn vận tốc xe thứ hai theo ẩn. Sau đó lập bảng:

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Xe thứ nhất

x

\(\frac{{50}}{x}\)

50

Xe thứ hai

\(x - 10\)

\(\frac{{50}}{{x - 10}}\)

50

 

Từ giả thiết, xe thứ nhất đến B trước xe thứ hai 15 phút, suy ra phương trình

Giải chi tiết

Đổi 15 phút \( = \frac{1}{4}\left( h \right)\)

Gọi vận tốc xe thứ nhất là x (km/h). Điều kiện \(x > 10\)

Khi đó vận tốc xe thứ hai là \(x - 10\) (km/h)

Thời gian xe thứ nhất đi từ A đến B là \(\frac{{50}}{x}\) (h)

Thời gian xe thứ hai đi từ A đến B là \(\frac{{50}}{{x - 10}}\) (h)

Vì xe thứ nhất đến B trước xe thứ hai 15 phút nên ta có phương trình:

\(\frac{{50}}{{x - 10}} - \frac{{50}}{x} = \frac{1}{4} \Leftrightarrow {x^2} - 10x - 2000 = 0 \Leftrightarrow \left( {x - 50} \right)\left( {x + 40} \right) = 0\)  

Vậy vận tốc xe thứ nhất là 50 km/h; vận tốc xe thứ hai là 40 km/h.

Lời giải

• Phân tích đề bài

Lập bảng:

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Xuôi dòng

\(x + 6\)

\(\frac{{60}}{{x + 6}}\)

60

Ngược dòng

x

\(\frac{{60}}{x}\)

60

 

Dựa vào giả thiết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút để lập phương trình.

Giải chi tiết

Đổi 20 phút\[ = \frac{1}{3}\] (h).

Gọi vận tốc ngược dòng của ca nô là x (km/h). Điều kiện: \[x > 0.\]

Vận tốc xuôi dòng của ca nô là \[x + 6\] (km/h).

Thời gian ca nô đi xuôi dòng từ A đến B là \(\frac{{60}}{{x + 6}}\) (h)

Thời gian ca nô đi ngược dòng từ B đến A là \(\frac{{60}}{x}\) (h).

Vì thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút nên ta có phương trình:

\[\begin{array}{l}\frac{{60}}{x} - \frac{{60}}{{x + 6}} = \frac{1}{3} \Leftrightarrow \frac{{180\left( {x + 6} \right)}}{{3x\left( {x + 6} \right)}} - \frac{{180x}}{{3x\left( {x + 6} \right)}}{\rm{ = }}\frac{{x\left( {x + 6} \right)}}{{3x\left( {x + 6} \right)}}\\ \Leftrightarrow 180\left( {x + 6} \right) - 180x = x\left( {x + 6} \right)\end{array}\]

\( \Leftrightarrow {x^2} + 6x - 1080 = 0 \Leftrightarrow \)

Vậy vận tốc ngược dòng của ca nô là 30km/h.

Lời giải

Phân tích đề bài

Gọi ẩn là vận tốc dự định của ô tô và lập bảng:

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Dự định

x

\(\frac{{260}}{x}\)

260

Thực tế

x

\(\frac{{120}}{x}\)

120

\(x + 10\)

\(\frac{{140}}{{x + 10}}\)

140

 

Từ đó suy ra phương trình.

Giải chi tiết

Đổi 20 phút \[ = \frac{1}{3}\] (h).

Gọi vận tốc dự định của ô tô là x (km/h). Điều kiện: \[x > 0.\]

Thời gian ô tô dự định đi từ A đến B là \(\frac{{260}}{x}\) (h).

Thời gian ô tô đi hết 120km đầu tiên là \(\frac{{120}}{x}\) (h).

Quãng đường còn lại ô tô phải đi là: \[260 - 120 = 140\] (km).

Vận tốc của ô tô trên quãng đường còn lại là \[x + 10\] (km/h).

Thời gian ô tô đi hết 140km là \(\frac{{140}}{{x + 10}}\)

Vì ô tô đến B sớm hơn 20 phút so với dự định nên ta có phương trình:

\[\frac{{260}}{x} = \frac{{120}}{x} + \frac{{140}}{{x + 10}} + \frac{1}{3} \Leftrightarrow \frac{{140}}{x} - \frac{{140}}{{x + 10}} = \frac{1}{3} \Leftrightarrow 140.3\left( {x + 10} \right) - 140.3x = x\left( {x + 10} \right)\]

\[ \Leftrightarrow {x^2} + 10x - 4200 = 0\]  

Vậy vận tốc dự định của ô tô là 60km/h.

Lời giải

Phân tích đề bài

Gọi hai ẩn là vận tốc riêng của ca nô và vận tốc dòng nước.

Lưu ý: Vận tốc xuôi dòng \[ = \] vận tốc thực của ca nô \[ + \] vận tốc dòng nước.

Vận tốc ngược dòng \[ = \] vận tốc thực của ca nô \[ - \] vận tốc dòng nước.

Lập bảng:

 

 

Vận tốc (km/h)

Thời gian (h)

Quảng đường (km)

Dự định

Xuôi dòng

\(x + y\)

\(\frac{{78}}{{x + y}}\)

78

Ngược dòng

\(x - y\)

\(\frac{{44}}{{x - y}}\)

44

Thực tế

Xuôi dòng

\(x + y\)

\(\frac{{13}}{{x + y}}\)

13

Ngược dòng

\(x - y\)

\(\frac{{11}}{{x - y}}\)

11

 

Giải chi tiết

Gọi vận tốc riêng của ca nô là x (km/h). Điều kiện: \[x > 0.\]

Gọi vận tốc của dòng nước là y (km/h). Điều kiện: \[y > 0.\]

Ca nô xuôi dòng đi với vận tốc \[x + y\] (km/h).

Đi đoạn đường 78km nên thời gian đi là \(\frac{{78}}{{x + y}}\) (giờ).

Ca nô đi ngược dòng với vận tốc \(x - y\) (km/h).

Đi đoạn đường 44km nên thời gian đi là \(\frac{{44}}{{x - y}}\) (giờ)

Tổng thời gian xuôi dòng là 78km và ngược dòng là 44km mất 5 giờ nên ta có phương trình:

\(\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\) (1)

Ca nô xuôi dòng 13km và ngược dòng 11km thì mất 1 giờ nên ta có phương trình:

\(\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\) (2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\\\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{x + y}} = \frac{1}{{26}}\\\frac{1}{{x - y}} = \frac{1}{{22}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 26\\x - y = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 24\\y = 2\end{array} \right.\) (thỏa mãn)

Vậy vận tốc riêng của ca nô là 24 km/h và vận tốc của dòng nước là 2km/h.

Lời giải

Giải chi tiết

Gọi vận tốc của ô tô là x (km/h), vận tốc của xe máy là y (km/h). Điều kiện: \[x > y > 0,{\rm{ }}x > 10.\]

Ta có phương trình: \[x - y = 10.\] (1)

Sau 2 giờ ô tô đi được quãng đường là 2x (km).

Sau 2 giờ xe máy đi được quãng đường là: 2y (km).

Sau 2 giờ họ gặp nhau nên ta có phương trình: \[2x + 2y = 180\] hay \[x + y = 90.\] (2)

Từ (1), (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 10\\x + y = 90\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 40\end{array} \right.\) (thỏa mãn).

Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là 40km/h.

4.6

4275 Đánh giá

50%

40%

0%

0%

0%