Dạng 3: Bài toán về chuyển động có đáp án
48 người thi tuần này 4.6 29.1 K lượt thi 6 câu hỏi 30 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
• Phân tích đề bài
Gọi ẩn là vận tốc xe thứ nhất, từ đó biểu diễn vận tốc xe thứ hai theo ẩn. Sau đó lập bảng:
|
Vận tốc (km/h) |
Thời gian (h) |
Quảng đường (km) |
Xe thứ nhất |
x |
\(\frac{{50}}{x}\) |
50 |
Xe thứ hai |
\(x - 10\) |
\(\frac{{50}}{{x - 10}}\) |
50 |
Từ giả thiết, xe thứ nhất đến B trước xe thứ hai 15 phút, suy ra phương trình
• Giải chi tiết
Đổi 15 phút \( = \frac{1}{4}\left( h \right)\)
Gọi vận tốc xe thứ nhất là x (km/h). Điều kiện \(x > 10\)
Khi đó vận tốc xe thứ hai là \(x - 10\) (km/h)
Thời gian xe thứ nhất đi từ A đến B là \(\frac{{50}}{x}\) (h)
Thời gian xe thứ hai đi từ A đến B là \(\frac{{50}}{{x - 10}}\) (h)
Vì xe thứ nhất đến B trước xe thứ hai 15 phút nên ta có phương trình:
\(\frac{{50}}{{x - 10}} - \frac{{50}}{x} = \frac{1}{4} \Leftrightarrow {x^2} - 10x - 2000 = 0 \Leftrightarrow \left( {x - 50} \right)\left( {x + 40} \right) = 0\)
Vậy vận tốc xe thứ nhất là 50 km/h; vận tốc xe thứ hai là 40 km/h.
Lời giải
• Phân tích đề bài
Lập bảng:
|
Vận tốc (km/h) |
Thời gian (h) |
Quảng đường (km) |
Xuôi dòng |
\(x + 6\) |
\(\frac{{60}}{{x + 6}}\) |
60 |
Ngược dòng |
x |
\(\frac{{60}}{x}\) |
60 |
Dựa vào giả thiết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút để lập phương trình.
• Giải chi tiết
Đổi 20 phút\[ = \frac{1}{3}\] (h).
Gọi vận tốc ngược dòng của ca nô là x (km/h). Điều kiện: \[x > 0.\]
Vận tốc xuôi dòng của ca nô là \[x + 6\] (km/h).
Thời gian ca nô đi xuôi dòng từ A đến B là \(\frac{{60}}{{x + 6}}\) (h)
Thời gian ca nô đi ngược dòng từ B đến A là \(\frac{{60}}{x}\) (h).
Vì thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút nên ta có phương trình:
\[\begin{array}{l}\frac{{60}}{x} - \frac{{60}}{{x + 6}} = \frac{1}{3} \Leftrightarrow \frac{{180\left( {x + 6} \right)}}{{3x\left( {x + 6} \right)}} - \frac{{180x}}{{3x\left( {x + 6} \right)}}{\rm{ = }}\frac{{x\left( {x + 6} \right)}}{{3x\left( {x + 6} \right)}}\\ \Leftrightarrow 180\left( {x + 6} \right) - 180x = x\left( {x + 6} \right)\end{array}\]
\( \Leftrightarrow {x^2} + 6x - 1080 = 0 \Leftrightarrow \)
Vậy vận tốc ngược dòng của ca nô là 30km/h.
Lời giải
• Phân tích đề bài
Gọi ẩn là vận tốc dự định của ô tô và lập bảng:
|
Vận tốc (km/h) |
Thời gian (h) |
Quảng đường (km) |
Dự định |
x |
\(\frac{{260}}{x}\) |
260 |
Thực tế |
x |
\(\frac{{120}}{x}\) |
120 |
\(x + 10\) |
\(\frac{{140}}{{x + 10}}\) |
140 |
Từ đó suy ra phương trình.
• Giải chi tiết
Đổi 20 phút \[ = \frac{1}{3}\] (h).
Gọi vận tốc dự định của ô tô là x (km/h). Điều kiện: \[x > 0.\]
Thời gian ô tô dự định đi từ A đến B là \(\frac{{260}}{x}\) (h).
Thời gian ô tô đi hết 120km đầu tiên là \(\frac{{120}}{x}\) (h).
Quãng đường còn lại ô tô phải đi là: \[260 - 120 = 140\] (km).
Vận tốc của ô tô trên quãng đường còn lại là \[x + 10\] (km/h).
Thời gian ô tô đi hết 140km là \(\frac{{140}}{{x + 10}}\)
Vì ô tô đến B sớm hơn 20 phút so với dự định nên ta có phương trình:
\[\frac{{260}}{x} = \frac{{120}}{x} + \frac{{140}}{{x + 10}} + \frac{1}{3} \Leftrightarrow \frac{{140}}{x} - \frac{{140}}{{x + 10}} = \frac{1}{3} \Leftrightarrow 140.3\left( {x + 10} \right) - 140.3x = x\left( {x + 10} \right)\]
\[ \Leftrightarrow {x^2} + 10x - 4200 = 0\]
Vậy vận tốc dự định của ô tô là 60km/h.
Lời giải
• Phân tích đề bài
Gọi hai ẩn là vận tốc riêng của ca nô và vận tốc dòng nước.
Lưu ý: Vận tốc xuôi dòng \[ = \] vận tốc thực của ca nô \[ + \] vận tốc dòng nước.
Vận tốc ngược dòng \[ = \] vận tốc thực của ca nô \[ - \] vận tốc dòng nước.
Lập bảng:
|
|
Vận tốc (km/h) |
Thời gian (h) |
Quảng đường (km) |
Dự định |
Xuôi dòng |
\(x + y\) |
\(\frac{{78}}{{x + y}}\) |
78 |
Ngược dòng |
\(x - y\) |
\(\frac{{44}}{{x - y}}\) |
44 |
|
Thực tế |
Xuôi dòng |
\(x + y\) |
\(\frac{{13}}{{x + y}}\) |
13 |
Ngược dòng |
\(x - y\) |
\(\frac{{11}}{{x - y}}\) |
11 |
• Giải chi tiết
Gọi vận tốc riêng của ca nô là x (km/h). Điều kiện: \[x > 0.\]
Gọi vận tốc của dòng nước là y (km/h). Điều kiện: \[y > 0.\]
Ca nô xuôi dòng đi với vận tốc \[x + y\] (km/h).
Đi đoạn đường 78km nên thời gian đi là \(\frac{{78}}{{x + y}}\) (giờ).
Ca nô đi ngược dòng với vận tốc \(x - y\) (km/h).
Đi đoạn đường 44km nên thời gian đi là \(\frac{{44}}{{x - y}}\) (giờ)
Tổng thời gian xuôi dòng là 78km và ngược dòng là 44km mất 5 giờ nên ta có phương trình:
\(\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\) (1)
Ca nô xuôi dòng 13km và ngược dòng 11km thì mất 1 giờ nên ta có phương trình:
\(\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ \begin{array}{l}\frac{{78}}{{x + y}} + \frac{{44}}{{x - y}} = 5\\\frac{{13}}{{x + y}} + \frac{{11}}{{x - y}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{x + y}} = \frac{1}{{26}}\\\frac{1}{{x - y}} = \frac{1}{{22}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 26\\x - y = 22\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 24\\y = 2\end{array} \right.\) (thỏa mãn)
Vậy vận tốc riêng của ca nô là 24 km/h và vận tốc của dòng nước là 2km/h.
Lời giải
• Giải chi tiết
Gọi vận tốc của ô tô là x (km/h), vận tốc của xe máy là y (km/h). Điều kiện: \[x > y > 0,{\rm{ }}x > 10.\]
Ta có phương trình: \[x - y = 10.\] (1)
Sau 2 giờ ô tô đi được quãng đường là 2x (km).
Sau 2 giờ xe máy đi được quãng đường là: 2y (km).
Sau 2 giờ họ gặp nhau nên ta có phương trình: \[2x + 2y = 180\] hay \[x + y = 90.\] (2)
Từ (1), (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 10\\x + y = 90\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 40\end{array} \right.\) (thỏa mãn).
Vậy vận tốc của ô tô là 50 km/h và vận tốc của xe máy là 40km/h.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.