🔥 Đề thi HOT:

1666 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
844 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.7 K lượt thi 15 câu hỏi
804 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.4 K lượt thi 18 câu hỏi
578 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) Ta có:

P=x1x22x+x+1x2+2x4x34x:12x

=x1xx2+x+1xx+24xx2x+2:12x

ĐKXĐ:

x20x+20x0     x2  x2x0  

Suy ra:

P=x1xx2+x+1xx+24xx2x+2:12x

=x1xx2+x+1xx+24xx2x+2:x2x

=x1xx2+x+1xx+24xx2x+2.xx2

=x1x22+x+1x2x+24x22x+2

=x1x+2x22x+2+x+1x2x22x+24x22x+2

=x2x+2x2x22x+2+x2+x2x2x22x+24x22x+2

=x2x+2x2+x2+x2x24x22x+2

=2x28x22x+2=2x24x22x+2

=2x2x+2x22x+2=2x2

b) Xét phương trình |2x - 1| = 5 ⇔ 2x1=52x1=52x=6  2x=4x=3  x=2

Đối chiếu ĐKXĐ ta suy ra được x = 3 là nghiệm của phương trình trên.

Thay x = 3 (TMĐK) vào biểu thức P, ta được:

P=232=21=2.

Vậy với x thỏa mãn điều kiện |2x - 1| = 5 thì P = 2.

Lời giải

a) 2x+12x2+5x+23x24=2

2x+12x2+4x+x+23x24=2

2x+12xx+2+x+23x2x+2=2

2x+12x+1x+23x2x+2=2

2x+12x+1x+23x2x+2=2

ĐKXĐ:

2x+10x+20x20x12x2x2  

Phương trình (1) trở thành

1x+23x2x+2=2

x2x2x+23x2x+2=2

x5x2x+2=2

x5x24=2

Û x - 5 = 2(x2 - 4)

Û 2x2 - x - 3 = 0

Û 2x2 + 2x - 3x - 3 = 0

Û 2x(x + 1) - 3(x + 1) = 0

Û (2x - 3)(x + 1) = 0

2x3=0x+1=0  x=32x=1

Đối chiếu ĐKXĐ suy ra tập nghiệm của phương trình là S=1;32.

b) |x - 3| - |x2 - x + 1| = 1

Ta có:

x2x+1=x2x+14+34

=x122+34>0x

Nên suy ra

|x - 3| - |x2 - x + 1| = 1

Û |x - 3| - (x2 - x + 1) = 1

Û |x - 3| = x2 - x + 2 (2)

+) TH1: x ³ 3

Phương trình (2) trở thành

Û x - 3 = x2 - x + 2

Û x2 - 2x + 5 = 0

Mà do x2 - 2x + 5 = (x2 - 2x + 1) + 4

= (x - 1)2 + 4 > 0 "x

Nên suy ra TH1 không cho nghiệm của x

+) TH2: x £ 3

Phương trình (2) trở thành

Û 3 - x = x2 - x + 2

Û x2 = 1

Đối chiếu ĐKXĐ nên suy ra x = ± 1 là nghiệm của phương trình.

c) (x2 - 1)(x3 + 1) ³ 0

Û (x - 1)(x + 1)(x + 1)(x2 - x + 1) ³ 0

Û (x - 1)(x + 1)2(x2 - x + 1) ³ 0 (3)

Do:

+) (x + 1)2 ³ 0 "

+) x2x+1=x2x+14+34

=x122+34>0x

Nên suy ra bất phương trình (3) trở thành

Û x - 1 ³ 0 Û x ³ 1

Vậy tập nghiệm của bất phương trình là S = {x | x ³ 1}.

Lời giải

a) Gọi x (km) là độ dài quãng đường AB

+) Theo dự định, người đó đi từ A đến B với vận tốc 48 km/h với thời gian là x48h

+) Thực tế, sau khi đi 1 giờ với vận tốc 48 km/h, người đó đi được quãng đường dài: 

48.1 = 48 (km)

Vậy số quãng đường còn lại là x - 48 (km)

Sau khi nghỉ 10 phút, tức là 1060=16h , để đến B đúng thời gian dự định thì người đó phải tăng vận tốc thêm 6 km/h trên quãng đường còn lại hết x4848+6=x4854h

Vậy trên thực tế người đó đến B đúng thời gian dự định nên suy ra ta có phương trình

1+16+x4854=x48

x48x4854=76

9x4328x48432=76

9x8x+384432=76

x+384432=76

x+384=76.432=504

Û x = 504 - 384 = 120

Vậy quãng đường AB có độ dài là 120 km.

b)

Media VietJack

Dựa vào hình vẽ ta thấy Bể bơi được chia thành hai phần:

+) Phần hình hộp chữ nhật với các kích thước là 10 m, 25 m, 2 m

+) Phần hình lăng trụ đứng với đáy là tam giác vuông có hai cạnh góc vuông là 4 - 2 = 2 m, 7 m và có chiều cao 10 m

Ta tính được:

+) Thể tích hình hộp chữ nhật là :

Vhhcn = 10.25.2 = 500 (m3)

+) Thể tích lăng trụ đứng tam giác :

Vlt=S.h=12.2.7.10=70m3

Vậy thể tích bể bơi khi đầy ắp nước là

V = Vhhcn + Vlt = 500 + 70 = 570 (m3).

 

Lời giải

Media VietJack

a) +) Xét tam giác BAC có E, D lần lượt là trung điểm của BA và BC nên suy ra ED là đường trung bình của tam giác BAC

Þ ED // AC và ED=AC2;BE=AB2

Mà BA ^ AC nên suy ra BA ^ ED

Suy ra MED^=90°

+) Xét tam giác CBA có F, D lần lượt là trung điểm của CA và CB nên suy ra FD là đường trung bình của tam giác BAC

Þ FD // AB và FD=AB2;CF=AC2

Mà BA ^ AC nên suy ra AC ^ FD

Suy ra NFD^=90°

+) Ta có:

ED // AC, FD // AB mà BA ^ AC nên suy ra ED ^ FD

EDN^+NDF^=90° (1)

MDN^=MDE^+EDN^=90°  (2)

Từ (1) và (2) nên suy ra MDE^=NDF^  (Do cùng phụ với góc EDN^ )

Xét hai tam giác DDEM và DDFN có:

MDE^=NDF^cmt  MED^=NFD^=90° DEM DDFN (g – g)

b) Do DDEM DDFN (g – g)

DMDN=DEDF=AC2AB2=ACAB

DMAC=DNAB

Xét hai tam giác DDMN và DACB có:

 DMAC=DNABcmt     MDN^=CAB^=90° DMN DACB (c – g – c)

c) +) Ta có:

MN2 = AM2 + AN2 = (AB - BM)2 + (AC - CN)2

= AB2 - 2AB.BM + BM2 + AC2 - 2AC.CN + CN2

= AB(AB - 2BM) + AC(AC - 2CN) + BM2 + CN2

= AB(2BE - 2BM) + AC(2CF - 2CN) + BM2 + CN2

= 2AB(BE - BM) - 2AC(CN - CF) + BM2 + CN2

= 2AB.EM - 2AC.FN + BM2 + CN2 (3)

+) Lại có:

DDEM DDFN (g.g)

EMFN=DEDF=AC2AB2=ACAB

Û AB.EM = AC.FN (4)

Thay (4) vào (3) suy ra (3) trở thành

MN2 = BM2 + CN2 (đpcm).

Lời giải

Ta có:

x2 + 2y2 + 2xy + 7x + 7y + 10 = 0

Û (x2 + 2xy + y2) + 7x + 7y + y2 + 10 = 0

Û (x + y)2 + 7(x + y) + y2 + 10 = 0 (1)

Đặt S = x + y nên suy ra phương trình (1) trở thành

(1) Û S2 + 7S + y2 + 10 = 0

S2+7S+494=94y2

S+722=94y294

Dấu “=” xảy ra Û 94y2=94y=0

Vậy S+72294

32S+7232

Û - 5 £ S £ -2

P=2x+2y3x+y+6=2x+y+615x+y+6

=215x+y+6=215S+6 (2)

Với - 5 £ S £ -2

Û 1 £ S + 6 £ 4

15415S+615

215215S+62154

13215S+674

13P74

Vậy suy ra GTNN của P = -13 x=5y=0  

Và GTLN của P=74x=2y=0  .

4.0

1 Đánh giá

0%

100%

0%

0%

0%