Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) 2x2 – 5x + 2 = 0

Cách 1:

Ta có D = (–5)2 – 4.2.2 = 9 > 0

Khi đó phương trình đã cho có hai nghiệm phân biệt

x1=5+92.2=2 và x2=592.2=12

Vậy phương trình đã cho có tập nghiệp S=2;12

Cách 2:

2x2 – 5x + 2 = 0

Û x252 x + 1 = 0

Û x212 x – 2x + 1 = 0

Û xx12  − 2x12  = 0

Û (x – 2)x12 = 0

Ûx2=0x12=0  Û x=2x=12 .

Vậy phương trình đã cho có tập nghiệp S=2;12

b) x4 + x2 – 6 = 0   (1)

Đặt t = x2 (t ≥ 0), phương trình (1) trở thành:

t2 + t – 6 = 0           (2)

Ta có hai cách giải phương trình (2) như sau:

Cách 1:

Ta có D = 12 – 4.1.(–6) = 25 > 0

Khi đó phương trình đã cho có hai nghiệm phân biệt là:

t1=1+252.1=2 (thỏa mãn) và  t2=1252.1=3 (không thỏa mãn)

Cách 2:

t2 + t – 6 = 0           (2)

Û t2 – 2t + 3t – 6 = 0

Û t(t – 2) + 3(t – 2) = 0

Û (t – 2)(t + 3) = 0

Û t2=0t+3=0

Û t = 2 (thỏa mãn) hay t = −3 (không thỏa mãn).

Với t = 2, ta có: x2 = 2

Û x = 2  hoặc x = -2 .

Vậy phương trình đã cho có tập nghiệm S=2;2.

Lời giải

+ Vẽ (P): y =  x22

Bảng giá trị

x

−2

−1

0

1

2

y = x22

2

12

0

12

2

 

Do đó (P) là đồ thị đi qua các điểm:

A(−2; 2); B1;  12 ; O(0; 0);C1;  12 ; D(2; 2).

+ Vẽ (D): y = −3x – 4

Đường thẳng (D): y = −3x – 4 có a = −3, b = −4 đi qua 2 điểm M(0; b) và Nba;0

Do đó 2 điểm thuộc đường thẳng (D) là M(0;−4) và N43;0 

a) Vẽ đồ thị (P) của hàm số y =   và đồ thị (D) của hàm số y = −3x – 4 trên cùng hệ trục tọa độ. b) Tính tọa độ các giao điểm của đồ thị (P) và đồ thị (D). (ảnh 1)

b) Phương trình hoành độ giao điểm của (P) và (D) là:

12x2 = −3x – 4

Û x2 = –6x – 8

Û x2 + 6x + 8 = 0

Û x2 + 4x + 2x + 8 = 0

Û x(x + 4) + 2(x + 4) = 0

Û (x + 4)(x + 2) = 0

Û x+4=0x+2=0

Û x=2x=4

• Thay x = −2 vào phương trình của (D): y = −3x – 4 ta được:

y = −3.(−2) − 4 = 2

Ta có tọa độ giao điểm là (−2; 2).

• Thay x = −4 vào phương trình của (D): y = −3x – 4 ta được:

y = −3.(−4) − 4 = 8

Ta có tọa độ giao điểm là (−4; 8).

Vậy tọa độ các giao điểm của (P) và (D) là (−2; 2) và (−4; 8).

Lời giải

x2 + 2mx + m2 + 2m – 2 = 0 có a = 1, b = 2m, c = m2 + 2m – 2

Ta có:

∆ = b2 – 4ac

= (2m)2 – 4.1.(m2 + 2m – 2)

= -8m + 8

a) Để phương trình (1) có hai nghiệm Û ∆ ≥ 0

Û −8m + 8 ≥ 0 Û m ≤ 1.

Vậy với m ≤ 1 thì phương trình (1) có hai nghiệm.

b) Với m ≤ 1, phương trình (1) có hai nghiệm x1, x2

Theo hệ thức Vi – ét ta có:

x1+x2=ba=2mx1x2=ca=m2+2m2

Ta có: x1x2 + x1 + x2 = 0

Û m2 + 2m – 2 – 2m = 0

Û m2 = 2

Û m = 2  (không thỏa mãn) hoặc m = -2  (thỏa mãn)

Vậy m = -2  thỏa mãn yêu cầu bài toán.

Lời giải

Gọi số học sinh tặng 3 quyển sách của lớp 9A là x (x ℕ*) (bạn).

Số học sinh tặng 5 quyển sách của lớp 9A là y (y ℕ*)  (bạn).

Vì lớp 9A có 42 học sinh nên ta có phương trình: x + y = 42 (1)

Vì cả lớp 9A đã tặng được 146 quyển sách nên ta có phương trình:

3x + 5y = 146 (2)

Từ (1) và (2), ta có hệ phương trình:

Ûx+y=423x+5y=146

3x+3y=126    (3)3x+5y=146    (4)

Ta lấy phương trình (4) trừ phương trình (3) vế theo vế ta được phương trình:

2y = 20

Û y = 10 (thỏa mãn)

Thay y = 10 vào phương trình (1) ta được:

x + 10 = 42 Û x = 32 (thỏa mãn)

Vậy lớp 9A có 32 bạn tặng 3 quyển sách và 10 bạn tặng 5 quyển sách.

Lời giải

a) Gọi y là số tiền mua kem (nghìn đồng) (y > 0).

x là số hộp kem mua được (hộp) (x > 3, x ℕ*).

Số tiền khi mua 3 hộp kem là:

3.40 = 120 (nghìn đồng)

Số hộp kem được tính với giá 20% là:

x – 3 (hộp kem)

Giá mỗi hộp kem (từ hộp thứ tư trở đi) là:

(100% – 20%).40 = 32 (nghìn đồng)

Số tiền cần trả khi mua nhiều hơn 3 hộp kem là:

y = 120 + (x – 3).32

= 32x + 24 (nghìn đồng).

b) Gọi a (hộp) là số hộp kem Bình mua (a > 3, a ℕ*)

Khi đó số hộp kem An mua là 2a (hộp kem)

Vì tổng số tiền mua kem của hai bạn là 624 nghìn đồng nên ta có phương trình:

32a + 24 + 32.2a + 24 = 624

Û 96a = 576 Û a = 6 (thỏa mãn).

Vậy Bình mua 6 hộp kem.

5.0

1 Đánh giá

100%

0%

0%

0%

0%