Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) Vì 2 > 0 nên hàm số đồng biến khi x > 0 và nghịch biến khi x < 0.

b) Bảng giá trị.

x

−1

-12 

0

12

1

y = 2x2

2

12

0

12

2

 

Trên mặt phẳng tọa độ lấy các điểm: A(−1; 2); B12;12; O(0; 0), C12;12; D(1; 2).

Cho hàm số y = 2x^2 có đồ thị (P). a) Nêu điều kiện của x để hàm số đồng biến, nghịch biến. b) Vẽ đồ thị (P). (ảnh 1)

Lời giải

a) Phương trình x2 + 4x + m + 1 = 0 có:

a = 1, b = 4, c = m + 1, b’ = b2= 2.

b) Thay m = −6 vào phương trình (1), ta được phương trình: x2 + 4x – 5 = 0

Û x2 – x + 5x – 5 = 0

Û x(x – 1) + 5(x – 1) = 0

Û (x – 1)(x + 5) = 0

Û x1=0x+5=0

Û x=1x=5

Vậy tập nghiệm phương trình (1) là S = {1; −5}.

c) x2 + 4x + m + 1 = 0

∆ = b2 – 4ac = 42 – 4.1.(m + 1)

= 16 – 4m – 4 = 12 – 4m

Để phương trình (1) có nghiệm thì ∆ ≥ 0 Û 12 – 4m ≥ 0

Û 4m ≤ 12 Û m ≤ 3.

Vậy với m ≤ 3 thì phương trình (1) có nghiệm.

d) Theo định lý Vi-et, ta có:

S = x1 + x2ba= −4;

P = x1x2 = ca= m + 1.

Ta có: x12 + x22 = 10

Û (x1 + x2)2 – 2x1x2 = 10

Û (−4)2 – 2.(m + 1) = 10

Û 2(m + 1) = 6

Û m + 1 = 3 Û m = 2.

Vậy để phương trình (1) có hai nghiệm thỏa mãn yêu cầu bài toán thì m = 2.

Lời giải

Cho tam giác ABC nhọn nội tiếp đường tròn (O), AB < AC. Các đường cao AD và BK cắt nhau tại H  (ảnh 1)

Ta có:  CDH^= 90° (AD ^ BC, H Î AD)

 CKH^= 90° (BK ^ AC, H Î BK)

Suy ra CKH^+CDH^ = 180°

Vậy tứ giác CDHK nội tiếp.

b) Ta có ∆ABC nội tiếp đường tròn tâm O nên A, B, C Î (O).

AD cắt đường tròn (O) tại E suy ra E Î (O).

Do đó tứ giác ABEC nội tiếp.

Vậy CBE^=CAE^ (hai góc cùng chắn cung CE).

c) Xét ∆ADC và ∆BKC, có:

 ACB^ chung

 BKC^=ADC^=90°

Do đó ∆ADC  ∆BKC (g.g)

Suy ra  CBK^=CAD^ (hai góc tương ứng)

Mà  CBE^=CAE^ (cmt) nên  CBE^=CBH^ 

Do đó BC là tia phân giác của  HBE^.

Lời giải

Diện tích xung quanh của một hình trụ là:

2p.5.6 = 60p (cm2)

Vậy diện tích xung quanh của hình trụ là 60p cm2.

5.0

1 Đánh giá

100%

0%

0%

0%

0%