Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án (Đề 16)
30 người thi tuần này 5.0 10.8 K lượt thi 6 câu hỏi 90 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Vẽ (P)
Bảng giá trị:
x |
−2 |
−1 |
0 |
1 |
2 |
y = −x2 |
−4 |
−1 |
0 |
−1 |
−4 |
Trên mặt phẳng tọa độ lấy các điểm: A(−2; −4), B(−1; −1), O(0; 0), C(1; −1), D(2; −4).
Vẽ (D)
Đường thẳng (D): y = 2x – 3 có a = 2, b = −3 đi qua hai điểm có tọa độ (0; b) và
Do đó, hai điểm thuộc đường thẳng (D) là M(0; −3) và N .

b) Phương trình hoành độ giao điểm của (P) và (D) là:
−x2 = 2x – 3
Û −x2 – 2x + 3 = 0
Û x2 + 2x – 3 = 0
Û x2 – x + 3x – 3 = 0
Û x(x – 1) + 3(x – 1) = 0
Û (x+3)(x – 1) = 0
Û
• Với x = −3 thì y = 2x – 3 = 2 . (−3) – 3 = −9.
Do đó, ta có tọa độ giao điểm của (P) và (D) là E(−3; −9).
• Với x = 1 thì y = 2x – 3 = 2 . 1 – 3 = −1.
Do đó, ta có tọa độ giao điểm của (P) và (D) là F(1; −1).
Vậy đồ thị hàm số (P) và (D) có 2 giao điểm là E(−3; −9) và F(1; −1).
Lời giải
a) Ta có phương trình 2x2 – 3x – 8 = 0 với a = 2, b = −3, c = −8.
Theo định lý Vi – ét, ta có:
S = x1 + x2 = = .
P = x1x2 = = = −4.
b) Ta có: =
=
= = .
Lời giải
Thể tích phần cần tính là tổng thế tích của hai hình trụ có đường kính là 11 cm và chiều cao là 2 cm.
V1 = pR2.h1 = = 60,5p (cm3)
Thể tích hình trụ có đường kính đáy là 6 cm, chiều cao là 7 cm là:
V2 = pR2.h2 = = 63p (cm3)
Thể tích của chi tiết máy là:
V = V1 + V2 = 60,5p + 63p = 123,5p (cm3).
Ta có: 123,5p ≈ 388.
Vậy thể tích của chi tiết máy đó (làm tròn kết quả đến hàng đơn vị) là 388 cm3.
Lời giải
Gọi x (học sinh), y (học sinh) lần lượt là số học sinh dự thi của trường A và trường B (x, y > 0).
Trường A có tỉ lệ đậu là 80%, trường B có tỉ lệ đậu là 90% và có 84% tổng thí sinh dự thi của hai trường thi đậu, ta có phương trình:
80%x + 90%y = 84%(x + y)
Û 0,8x + 0,9y = 0,84x + 0,84y
Û −0,04x + 0,06y = 0 (1)
Theo đề bài, tất cả 630 học sinh đậu vào lớp 10 công lập, đạt tỉ lệ 84% tổng số học sinh dự thi của hai trường, nên ta có phương trình:
84%(x + y) = 630
Û 0,84x + 0,84y = 630 (2)
Từ (1) và (2) ta lập được hệ phương trình:
Vậy trường A có 450 học sinh dự thi và trường B có 300 học sinh dự thi.
Lời giải
a) Quãng đường vật đi được sau 2 giây là:
s = 4.22 = 16 (m)
Sau 2 giây, khoảng cách của vật này với mặt đất là:
100 – 16 = 84 (m).
Vậy sau 2 giây, vật này cách mặt đất 84 m.
b) Ta có s = 4t2 mà vật rơi ở độ cao cách mặt đất là 100m. Khi đó:
4t2 = 100 Û t2 = 25 Þ t = 5(s)
Vậy vật này tiếp đất sau 5 giây.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.