Đề kiểm tra giữa học kì 2 môn Toán 9 (Mới nhất)_đề 22
45 người thi tuần này 4.6 15.2 K lượt thi 4 câu hỏi 90 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\(1)y = a{x^2}\)qua \(A\left( { - 1;1} \right) \Rightarrow {\left( { - 1} \right)^2}.a = 1 \Leftrightarrow a = 1\)
\(\begin{array}{l}2)a){x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\\b){x^2} + 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 2\end{array} \right.\\c)\frac{1}{{x - 2}} + 1 = \frac{{5 - x}}{{x - 2}}\left( {x \ne 2} \right) \Leftrightarrow \frac{{1 + x - 2}}{{x - 2}} = \frac{{5 - x}}{{x - 2}}\\ \Rightarrow x - 1 = 5 - x \Leftrightarrow x = 3(tm)\end{array}\)
Lời giải
Gọi \(x\)là chiều dài, \(y\)là chiều rộng \(\left( \begin{array}{l}x,y > 0\\x > 20\end{array} \right)\)
Theo bài ta có hệ : \(\left\{ \begin{array}{l}x - y = 20\\2x + 3y = 240\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 60\\y = 40\end{array} \right.(tm)\)
Vậy chiều dài : 60m, chiều rộng : 40m
Lời giải
\({x^2} - 2mx - 3 = 0\)
\(a)\Delta ' = {m^2} + 3 > 0\)nên phương trình luôn có hai nghiệm phân biệt
b) Áp dụng hệ thức Vi – et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - 3\end{array} \right.\)
\(\begin{array}{l}x_1^2 + x_2^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow 2m + 6 = 10 \Leftrightarrow m = 2\end{array}\)
Lời giải
Ta có phương trình hoành độ giao điểm \(\left( P \right),\left( d \right):\)
\({x^2} - 2\left( {m + 3} \right)x + 2m - 2 = 0\)
\(\Delta ' = {\left( {m + 3} \right)^2} - \left( {2m - 2} \right) = {m^2} + 4m + 11 > 0\)
Nên \(\left( d \right)\)cắt (P) tại hai điểm phân biệt
Do \({x_1} > 0,{x_2} > 0 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m + 6 > 0\\2m - 2 > 0\end{array} \right. \Leftrightarrow m > 1\)
3044 Đánh giá
50%
40%
0%
0%
0%