10 câu Trắc nghiệm Công thức lượng giác có đáp án (Thông hiểu)

35 người thi tuần này 4.6 3.2 K lượt thi 10 câu hỏi 15 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Thu gọn A=sin2α+sin2β+2sinαsinβ.cosα+β ta được:

Lời giải

Đáp án A

A=sin2α+sin2β+2sinαsinβ.cosα+β=sin2α+sin2β+2sinαsinβ.cosα.cosβsinαsinβ=sin2α+sin2β2sin2αsin2β+2sinαsinβcosα.cosβ=sin2α(1sin2β)+sin2β(1sin2α)+2sinαsinβcosα.cosβ=sin2αcos2β+sin2βcos2α+2sinαsinβcosα.cosβ=(sinαcosβ+sinβcosα)2=sin2α+β

Câu 2

Cho biểu thức: A=sin2(a+b)sin2asin2b.Chọn đáp án đúng:

Lời giải

Đáp án D

Ta có:

A=sinacosb+cosasinb2sin2asin2b=sin2acos2b+2sinacosasinbcosb+cos2asin2bsin2asin2b=sin2a(cos2b1)+sin2b(cos2a1)+2sinacosasinbcosb=2sinacosasinbcosb2sin2asin2b=2sinasinb(cosacosbsinasinb)=2sinasinbcosa+b

Câu 3

Tính giá trị biểu thức P=sina+sinb2+cosa+cosb2 biết ab=π4

Lời giải

Đáp án D

Ta có:

P=sina+sinb2+cosa+cosb2=sin2a+2sinasinb+sin2b+cos2a+2cosacosb+cos2b=2+2(sinasinb+cosacosb)=2+2cosab=2+2cosπ4=2+2

Câu 4

Biết cosα+β=0 thì sinα+2β bằng:

Lời giải

Đáp án A

sinα+2β=sinα.cos2β+cosα.sin2β=sinα.(12sin2β)+2cosαsinβcosβ=sinα+2sinβ(cosα.cosβsinα.sinβ)=sinα+2sinβcosα+β=sinα

Câu 5

Mệnh đề nào dưới đây là đúng?

Lời giải

Đáp án B

Ta có:

sina+bsinab=12(cos2bcos2a)=122cos2b12cos2a1=cos2bcos2a

Câu 6

Cho góc α thỏa mãn tanα=2. Tính giá trị biểu thức P=1+cosα+cos2αsinα+sin2α

Lời giải

Đáp án B

Ta có:

P=1+cosα+cos2αsinα+sin2α=2cos2α+cosαsinα+2sinαcosα=cosα(1+2cosα)sinα(1+2cosα)=cotα=12

Câu 7

Tính: A=sinπ9+sin5π9cosπ9+cos5π9

Lời giải

Đáp án A

A=sinπ9+sin5π9cosπ9+cos5π9=2sinπ3cos2π92cosπ3cos2π9=tanπ3=3

Câu 8

Giá trị của biểu thức A=sin2π8+sin23π8+sin25π8+sin27π8

Lời giải

Đáp án A

A=1cosπ42+1cos3π42+1cos5π42+1cos7π42=212cosπ4+cos3π4+cos5π4+cos7π4=212cosπ4+cos3π4cos3π4cosπ4=2

Câu 9

Giá trị của biểu thức A=sin4x+cos4x14cos4x là:

Lời giải

Đáp án C

Ta có:

A=sin4x+cos4x14cos4x=sin2x+cos2x22sin2xcos2x14cos4x=112sin22x14cos4x=1141cos4x14cos4x=34

Câu 10

Rút gọn biểu thức A=cos2xsin2xcot2xtan2x ta được:

Lời giải

Đáp án B

Ta có:

A=cos2xsin2xcos2xsin2xsin2xcos2x=cos2xsin2xcos4xsin4x.sin2xcos2x=sin2xcos2xsin2x+cos2x=142sinxcosx2=14sin22x

4.6

641 Đánh giá

50%

40%

0%

0%

0%