15 câu Trắc nghiệm Các hệ thức lượng trong tam giác và giải tam giác có đáp án (Vận dụng)

46 người thi tuần này 5.0 4 K lượt thi 15 câu hỏi 25 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Tam giác ABC có AB = c, BC = a, CA = b. Các cạnh a, b, c liên hệ với nhau bởi đẳng thức bb2a2=ca2c2. Khi đó góc BAC^ bằng bao nhiêu độ?

Lời giải

Đáp án C

Theo định lí hàm cosin, ta có:

cosBAC^=AB2+AC2BC22.AB.AC=c2+b2a22bc

bb2a2=ca2c2

b3a2b=a2cc3a2b+c+b3+c3=0b+cb2+c2a2bc=0

 b2+c2a2bc=0 (do b > 0, c > 0)

b2+c2a2=bc

Khi đó, cosBAC^=b2+c2a22bc=12

BAC^=600

Câu 2

Tam giác ABC có AB = 3, AC = 6 và A^=600. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC

Lời giải

Đáp án A

Áp dụng định lí cosin, ta có:

BC2=AB2+AC22.AB.AC.cosBAC^=32+622.3.6.cos600=27BC2=27BC2+AB2=AC2

Suy ra tam giác ABC vuông tại B, do đó bán kính R=AC2=3

Câu 3

Tam giác vuông cân tại A có AB = 2a. Đường trung tuyến BM có độ dài là:

Lời giải

Đáp án D

+ Ta có: AB = AC = 2a

+ Ta có: BC=AB2+AC2=4a2+4a2=22a

MB2=BC2+AB22AC24=8a2+4a224a24=5a2MB=a5

Câu 4

Tam giác ABC cân tại C, có AB = 9cm và AC=152cm. Gọi D là điểm đối xứng của B qua C. Tính độ dài cạnh AD

Lời giải

Đáp án C

Ta có: D là điểm đối xứng của B qua C ⇒ C là trung điểm của BD.

⇒ AC là trung tuyến của tam giác ΔDAB.

      BD = 2BC = 2AC = 15.

Theo hệ thức trung tuyến ta có:

AC2=AB2+AD22BD24AD2=2AC2+BD22AB2AD2=2.1522+152292=144AD=12

Câu 5

Cho tam giác ABC vuông tại A có AB = 5cm, BC = 13cm. Gọi góc ABC^=α và ACB^=β. Hãy chọn kết luận đúng khi so sánh α và β

Lời giải

Đáp án B

+ Có AC=BC2AB2=13252=12

bsinB=csinCsinCsinB=cb=512<1 (*)

+ Tam giác ABC vuông tại A, suy ra B và C là góc nhọn. Do đó sinB > 0 và sinC > 0

Từ (*) suy ra sinC < sinB. Suy ra C < B hay β<α

Câu 6

Trong tam giác ABC có:

Lời giải

Đáp án B

Ta có:

ma2b+c22=b2+c22a24b2+c2+2bc4=b2+c2a22bc4=bc2a24

Trong tam giác ta có: bc<a suy ra bc2<a2

Do đó bc2a24<0ma2b+c22<0

Vậy ma<b+c2

Câu 7

Tam giác ABC có ba đường trung tuyến ma, mb, mc thỏa mãn 5ma2=mb2+mc2. Khi đó tam giác này là tam giác gì?

Lời giải

Đáp án C

Ta có: ma2=b2+c22a24mb2=a2+c22b24mc2=a2+b22c24

Mà: 5ma2=mb2+mc2

5b2+c22a24=a2+c22b24+a2+b22c2410b2+10c25a2=2a2+2c2b2+2a2+2b2c2b2+c2=a2

 tam giác ABC vuông

Câu 8

Tam giác ABC có AB = c, BC = a, CA = b. Gọi ma, mb, mc là độ dài ba đường trung tuyến, G trọng tâm. Xét các khẳng định sau:

(I) ma2+mb2+mc2=34a2+b2+c2

(II) GA2+GB2+GC2=13a2+b2+c2

Trong các khẳng định đã cho có:

Lời giải

Đáp án D

Mệnh đề (I): ma2=b2+c22a24mb2=a2+c22b24mc2=a2+b22c24

ma2+mb2+mc2=34a2+b2+c2

Mệnh đề (II):

GA2+GB2+GC2=49ma2+mb2+mc2=49.34a2+b2+c2=13a2+b2+c2

Câu 9

Cho góc xOy^=300. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:

Lời giải

Đáp án D

Theo định lí hàm sin, ta có:

OBsinOAB^=ABsinAOB^OB=ABsinAOB^.sinOAB^=1sin300.sinOAB^=2sinOAB^

Do đó, độ dài OB lớn nhất khi và chỉ khi sinOAB^=1OAB^=900

Khi đó OB = 2

Câu 10

Cho góc xOy^=300. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Khi OB có độ dài lớn nhất thì độ dài của đoạn OA bằng:

Lời giải

Đáp án B

Theo định lí hàm sin, ta có:

OBsinOAB^=ABsinAOB^OB=ABsinAOB^.sinOAB^=1sin300.sinOAB^=2sinOAB^

Do đó, độ dài OB lớn nhất khi và chỉ khi sinOAB^=1OAB^=900

Khi đó OB = 2

Tam giác OAB vuông tại A

OA=OB2AB2=2212=3

Câu 11

Tam giác ABC vuông tại A, có AB = c, AC = b. Gọi la là độ dài đoạn phân giác trong góc BAC^. Tính la theo b và c

Lời giải

Đáp án A

Ta có BC=AB2+AC2=b2+c2

Do AD là phân giác trong của BAC^

BD=ABAC.DC=cb.DC=cb+c.BC=cb2+c2b+c

Theo định lí hàm cosin, ta có:

BD2=AB2+AD22.AB.AD.cosBAD^c2b2+c2b+c2=c2+AD22c.AD.cos450AD2c2.AD+c2c2b2+c2b+c2=0AD2c2.AD+2bc3b+c2=0AD=2bcb+c hay la=2bcb+c

Câu 12

Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 60. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Lời giải

Đáp án B

Sau 2 giờ tàu B đi được 40 hải lí, tàu C đi được 30 hải lí. Vậy tam giác ABC có AB = 40, AC = 30 và A^=600

Áp dụng định lí côsin vào tam giác ABC, ta có

a2=b2+c22bccosA=302+4022.30.40.cos600=900+16001200=1300

Vậy BC=130036 (hải lí)

Sau 2 giờ, hai tàu cách nhau khoảng 36 hải lí

Câu 13

Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt giác kế thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m. Quay thanh giác kế sao cho khi ngắm theo thanh OB ta nhìn thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc AOB^=600. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

Lời giải

Đáp án C

Tam giác OAB vuông tại B, ta có:

tanAOB^=ABOBAB=tan600.OB=603m

Vậy chiều cao của ngọn tháp là:

h=AB+OC=603+1m

Câu 14

Từ vị trí A người ta quan sát một cây cao (hình vẽ).

Biết AH = 4m, HB = 20m, BAC^=450

Chiều cao của cây gần nhất với giá trị nào sau đây?

Lời giải

Đáp án B

Trong tam giác AHB, ta có 

tanABH^=AHBH=420=15ABH^11019

Suy ra ABC^=900ABH^=78041'

Suy ra ACB^=1800BAC^+ABC^=56019'

Áp dụng định lí sin trong tam giác ABC, ta được:

ABsinACB^=CBsinBAC^CB=AB.sinBAC^sinACB^=AH2+BH2.sin45°sin56°19'17m

Câu 15

Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Chọn hai  điểm A, B trên mặt đất sao cho ba điểm A, B và C thẳng hàng. Ta đo được AB = 24m, CAD^=α=630,CBD^=β=480. Chiều cao h của tháp gần với giá trị nào sau đây?

Lời giải

Đáp án D

Áp dụng định lí sin vào tam giác ABD, ta có:

ADsinB=ABsinD

Ta có: α=D^+β nên D^=αβ=630480=150

Do đó AD=AB.sinβsinαβ=24.sin480sin15068,91m

Trong tam giác vuông ACD, có h=CD=AD.sinα61,4m

5.0

2 Đánh giá

100%

0%

0%

0%

0%