15 câu Trắc nghiệm Phương trình đường thẳng có đáp án (Vận dụng)

43 người thi tuần này 4.6 4.6 K lượt thi 15 câu hỏi 15 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Xác định m để 2 đường thẳng d: 2x – 3y + 4 = 0 và d’: x=2-3ty=1-4mt vuông góc

Lời giải

(d): 2x-3y=4=0 có VTPT là: n=2;-3 suy ra VTCP của (d) là: ud=3;2

(d’): x=2-3ty=1-4mt suy ra ud'=-3;-4m là VTCP của (d’)

Để d'd thì

ud.ud'=0-9-8m=0m=-98

Đáp án cần chọn là: C

Câu 2

Cho hai đường thẳng d1:x=-1+3ty=1+2t;d2:x+33=y1. Tọa độ giao điểm của d1 và d2 là:

Lời giải

Gọi M (x; y) là giao điểm của d1 và d2, khi đó Md1 nên tọa độ của m thỏa mãn:

Thay vào d2, ta có:

Giao điểm của hai đường thẳng là: -2;13

Đáp án cần chọn là: A

Câu 3

Với giá trị nào của m thì hai đường thẳng (Δ1): 3x + 4y – 1 = 0 và (Δ2): (2m − 1)x + m2y + 1 = 0 trùng nhau

Lời giải

Vậy không có giá trị nào của m thỏa mãn

Đáp án cần chọn là: C

Câu 4

Cho 3 đường thẳng (d1): 3x − 2y + 5 = 0, (d2): 2x + 4y – 7 = 0, (d3):  3x + 4y – 1 = 0. Viết phương trình đường thẳng (d) đi qua giao điểm của (d1), (d2) và song song với (d3).

Lời giải

Tọa độ giao điểm M của d1,d2 là nghiệm của hệ

Phương trình đường thẳng  song song với d3 qua M-38;3116 có dạng:

Đáp án cần chọn là: A

Câu 5

Trong mặt phẳng với hệ tọa độ Oxy cho ΔABC có A (1; 2), B (4; −2), C (−3; 5). Một véctơ chỉ phương của đường phân giác trong của góc A là

Lời giải

Ta có:

suy ra ABC là tam giác cân tại A

Do đó đường phân giác trong của góc A cũng chính là đường trung tuyến của tam giác

Gọi M là trung điểm BC khi đó AM là vec tơ chỉ phương của đường phân giác trong của góc A

Ta có:

Suy ra AM=-12;-12

Vậy một vec tơ chỉ phương của đường phân giác trong của góc A có dạng u=1;1

Đáp án cần chọn là: C

Câu 6

Cho (d): x=2+3ty=3+t. Hỏi có bao nhiêu điểm Md cách A(9; 1) một đoạn bằng 5

Lời giải

Câu 7

Cho tam giác ABC biết trực tâm H (1; 1) và phương trình cạnh AB: 5x − 2y + 6 = 0, phương trình cạnh AC: 4x + 7y – 21 = 0. Phương trình cạnh BC là

Lời giải

Suy ra phương trình đường thẳng BH có nBH=7;-4H1;1

BH: 7(x − 1) − 4(y − 1) = 0 ⇔ 7x − 4y – 3 = 0

Ta có điểm B là giao điểm của hai đường thẳng AB và BH, suy ra tọa độ điểm B là nghiệm của hệ phương trình

Câu 8

Đường thẳng d: xa+yb=1, với a0,b0 đi qua điểm M(-1;6) và tạo với các tia Ox, Oy một tam giác có diện tích bằng 4. Tính S = a + 2b

Lời giải

Đường thẳng d: xa+yb=1 đi qua điểm M-1;6-1a+6b=1 (1).

Gọi A, B lần lượt là giao điểm của d với các tia Ox, Oy thì A(a;0); B(0;b) và a, b >0

Đường thẳng d: xa+yb=1 tạo với các tia Ox, Oy tam giác có diện tích bằng 4

Câu 9

Viết phương trình đường thẳng đi qua điểm M (2; -3) và cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB vuông cân

Lời giải

Phương trình đoạn chắn AB: xa+yb=1

Do ΔOAB vuông cân tại O ⇔ |a| = |b| ⇔ [b=ab=-a

TH1: b = a xa+ya=1 ⇔ x + y = a mà

 M (2; −3) ∈ (AB) ⇒ 2 – 3 = a ⇔ a = −1 ⇒ b = −1

Vậy (AB): x + y + 1 = 0

TH2:  b = −a   ⇒ xa-ya=1⇔ x – y = a mà

 M (2; −3) ∈ (AB) ⇒ 2 + 3 = a ⇔ a = 5 ⇒ b = −5

Vậy (AB): x – y – 5 = 0

Đáp án cần chọn là: A

Câu 10

Gọi Δ là đường thẳng song song với đường thẳng d: 3x − 2y + 12 = 0 và cắt Ox, Oy lần lượt tại A, B sao cho  AB=13. Phương trình nào dưới đây có thể là phương trình của Δ?

Lời giải

Vì Δ // d nên Δ có dạng 3x − 2y + c = 0 với c ≠ 12.

Δ cắt Ox, Oy lần lượt tại A, B suy ra tọa độ của A (− c3; 0) và B (0; c2).

Theo đề bài

 

Câu 11

Trong mặt phẳng tọa độ Oxy, cho tam giác MNP vuông tại M. Biết điểm M (2; 1), N (3; −2) và P là điểm nằm trên trục Oy. Tính diện tích tam giác MNP.

Lời giải

P nằm trên Oy P0;p mà MNP vuông tại MMP.MN=0

MP=-2;p-1;MN=1;-3 nên

Câu 12

Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A (−1; 2) đến đường thẳng Δ: mx + y – m + 4 = 0 bằng 25

Lời giải

Câu 13

Điểm A (a; b) thuộc đường thẳng d:x=3-ty=2-t và cách đường thẳng Δ: 2x – y – 3 = 0 một khoảng bằng 25 và a > 0. Tính P = a.b

Lời giải

Đường thẳng Δ và có vectơ pháp tuyến là n=2;-1

Điểm A thuộc đường thẳng (d) ⇒ A (3 − t; 2 − t)

Với t = −9 ⇒ A (12; 11) ⇒ a.b = 12.11 = 132.

Với t = 11 ⇒ A (−8; −9) (loại vì a > 0).

Đáp án cần chọn là: C

Câu 14

Lập phương trình đường phân giác trong của góc A của ΔABC biết A (2; 0); B (4; 1); C (1; 2).

Lời giải

+ Cạnh AB đi qua hai điểm A, B nên phương trình cạnh AB: x − 2y – 2 = 0

+ Cạnh AC đi qua hai điểm A, C nên phương trình cạnh AC: 2x + y – 4 = 0

+ Phương trình hai đường phân giác của góc A:

⇔ x + 3y − 2 = 0 (d) hoặc 3x − y − 6 = 0 (d′)

+ Xét đường phân giác (d): x + 3y – 2 = 0

Thế tọa độ điểm B vào vế trái của d: t1 = 4 + 3.1 – 2 = 5 > 0

Thế tạo độ điểm C vào vế trái của d: t2 = 1 + 3.2 – 2 = 5 > 0

Vì t1.t2 > 0 nên B và C nằm cùng phía đối với d ⇒ d là đường phân giác ngoài

Vậy đường phân giác trong của góc A là: d′: 3x – y – 6 = 0

Đáp án cần chọn là: A

Câu 15

Cho tam giác ABC có diện tích bằng S = 32, hai đỉnh A (2; −3) và B (3; −2). Trọng tâm G nằm trên đường thẳng 3x – y – 8 = 0. Tìm tọa độ đỉnh C?

Lời giải

Gọi G (a; 3a − 8). Do SABC = 32 ⇒ SGAB 12

Đường thẳng AB nhận AB = (1; 1) là véc tơ chỉ phương nên có phương trình x – y – 5 = 0.

Vậy C (−2; −10) hoặc C (1; −1) thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

4.6

915 Đánh giá

50%

40%

0%

0%

0%