19 câu Trắc nghiệm Phép đối xứng tâm có đáp án
65 người thi tuần này 5.0 4.5 K lượt thi 19 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Hình có hai đường thẳng a và b song song với nhau thì có bao nhiêu phép đối xứng tâm biến a thành b?
Lời giải
Lấy hai điểm A, B bất kì lần lượt thuộc a, b. Trung điểm I của AB chính là tâm đối xứng của hình.
Vì A và B là 2 điểm bất kì nên có vô số điểm I thỏa mãn.
Chọn đáp án D
Câu 2
Cho hình bình hành ABCD tâm O. Gọi E, F lần lượt là trung điểm của các cạnh BC và AD. Phép đối xứng tâm O biến.
Lời giải
Phép đối xứng tâm O biến:
Ba phương án A, B, C đều sai về hướng của vecto
Đáp án D
Lời giải
Phép đối xứng tâm O biến M(x;y) thành M’(-x;-y).
Áp dụng biểu thức tọa độ của phép đối xứng tâm ta có:
Chọn đáp án B
Câu 4
Trong mặt phẳng Oxy cho điểm M(2;-6) và điểm I(1;4). Phép đối xứng tâm I biến M thành M’ thì tọa độ M’ là:
Lời giải
Phép đối xứng tâm I biến điểm M thành điểm M' thì điểm I là trung điểm của MM'.
Do đó:
Câu 5
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - 6y + 5 = 0 điểm I(2;-4). Phép đối xứng tâm I biến d thành d’ có phương trình:
Lời giải
Lấy M(x;y) thuộc d, phép đối xứng tâm I (x0; y0) biến M(x; y) thành M'(x'; y') thuộc d'
Suy ra, I là trung điểm của MM'. Do đó:
(1)
Vì điểm M(x, y) thuộc đường thẳng d nên : 2x - 6y + 5 = 0 (2)
Thay (1) vào (2) ta được :
2(4 - x') - 6(-8 - y') + 5 = 0 ⇒ 2x' - 6y' - 61 = 0
Suy ra,phương trình đường thẳng d' là: 2x - 6y - 61 = 0.
Chọn đáp án B
Lời giải
Hình bình hành có tâm đối xứng; hình tam giác cân và hình tam giác đều chỉ có trục đối xứng.
Đáp án B
Lời giải
Đáp án A.
Hình chữ nhật có 1 tâm đối xứng là giao điểm của 2 đường chéo
Do đó, có duy nhất một phép đối xứng tâm biến hình chữ nhật thành chính nó.
Câu 8
Trong mặt phẳng Oxy cho điểm M(-5;9). Phép đối xứng tâm I(2; -6) biến M thành M’ thì tọa độ M’ là.
Lời giải
Đáp án C
Câu 9
Trong mặt phẳng Oxy cho điểm I(2; -5). Phép đối xứng tâm I biến M(x; y) thành M'(3; 7). Tọa độ của M là:
Lời giải
Phép đối xứng tâm I biến điểm M(x;y) thành điểm M'(x'; y') nên I là trung điểm của đoạn thẳng MM '
Đáp án D
Câu 10
Trong mặt phẳng Oxy phép đối xứng tâm I biến M(6; -9) thành M'(3;7). Tọa độ của tâm đối xứng I là:
Lời giải
Đáp án C
Câu 11
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 6x + 5y - 7 = 0; điểm I(2;-1). Phép đối xứng tâm I biến d thành d’ có phương trình:
Lời giải
Thay tọa độ điểm I vào phương trình đường thẳng d ta được:
6. 2 + 5. (-1) - 7 = 0
Suy ra,điểm I nằm trên đường thẳng d
Vì tâm đối xứng I thuộc d thì phép đối xứng tâm I biến d thành chính nó.
Nhận xét: lưu ý kiểm tra xem tâm có thuộc d không, cũng như với phép tịnh tiến thì kiểm tra xem vecto tịnh tiến có cùng phương với vecto chỉ phương của d không.
Đáp án B
Câu 12
Trong mặt phẳng Oxy cho hình (H) gồm đường thẳng d có phương trình: 3x - 5y + 7 = 0; đường thẳng d’ có phương trình 3x - 5y + 12 = 0. Một tâm đối xứng của (H) là:
Lời giải
Hai đường thẳng d và d’ song song.
+ Xét phương án A và B : vì điểm A(1; 2) thuộc d và điểm B(-4; 0) thuộc d’ nên A và B bị loại
+ Xét phương án C: điểm C ( 0; 19/10)
Tính khoảng cách từ C tới hai đường thẳng d, d’
⇒ d(C;d)=d(C;d')=> C là tâm đối xứng của hình
Nhận xét: nếu I là tâm đối xứng của hình gồm hai đường thẳng song song thì I cách đều hai đường thẳng song song đó.
Đáp án C
Câu 13
Trong mặt phẳng Oxy cho hình (H) gồm đường thẳng d có phương trình 3x - 5y + 7 = 0 và đường thẳng d’ có phương trình:
Tâm đối xứng của (H) là:
Lời giải
Đường thẳng d vó vecto chỉ phương ; Đường thẳng d’ có vecto chỉ phương nên d không song song với d’. Tâm đối xứng của hình (H) chính là giao điểm của d và d’:
Gọi I là giao điểm của d và d’.
Điểm I thuộc d’ nên tọa độ I(2- 3t; 4+ t)
Lại có, I thuộc d nên thay tọa độ điểm I vào phương trình đường thẳng d ta được:
3(2 - 3t) - 5(4 + t) + 7 = 0 ⇒ -14t = 7
Đáp án C
Câu 14
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình và đường tròn (C’) có phương trình . Phép đối xứng tâm K biến (C) thành (C’). tọa độ của K là:
Lời giải
Đường tròn (C) có tâm I(2; -4), bán kính R= 3
Đường tròn (C’) có tâm J( 3; -3) và bán kính R’ = 3
Vì R= R’ nên tồn tại phép đối xứng tâm: biến đường tròn (C) thành (C’).
Khi đó; tâm đối xứng K là trung điểm IJ.
Đáp án D
Câu 15
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình ; điểm I(1;2). Phép đối xứng tâm I biến (C) thành (C’) có phương trình:
Lời giải
Phép đối xứng tâm I(1; 2) biến đường tròn (C) thành đường tròn (C')
và biến M(x; y) thuộc (C) thành M’(x’; y’) thuộc (C') thì:
(1)
Vì điểm M(x, y) thuộc (C) nên:
(2)
Thay (1) vào (2) ta được:
⇒
Suy ra phương trình (C')
Đáp án A
Câu 16
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình: . Phép đối xứng có tâm O là gốc tọa độ biến (C) thành (C’) có phương trình:
Lời giải
Đáp án D
Câu 17
Trong mặt phẳng Oxy cho parabol (P) có phương trình . Phép đối xứng tâm O(0;0) biến (P) thành (P’) có phương trình:
Lời giải
Đáp án C
Câu 18
Trong mặt phẳng Oxy cho parabol (P) có phương trình: . Phép đối xứng tâm I(4; -3) biến P thành (P’) có phương trình:
Lời giải
Phép đối xứng tâm I biến M(x; y) thành M’(x’; y’) thì:
Thay vào phương trình (P) ta được:
⇒ hay
Đáp án A
Câu 19
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x - 2y + 2 = 0; đường thẳng d’ có phương trình x - 2y - 8 = 0. Tìm tọa độ điểm I sao cho phép đối xứng tâm I biến d thành d’ đồng thời biến trục Oy thành chính nó.
Lời giải
Dễ thấy d // d’, ta có d ∩ Oy = A(0; 1); d’ ∩ Oy = A’(0; -4). Phép đối xứng tâm I biến Oy thành Oy thì I thuộc trục Oy; biến d thành d’ thì I là trung điểm của AA’ ⇒ I(0; -3/2).
Đáp án D
1 Đánh giá
100%
0%
0%
0%
0%