15 câu Trắc nghiệm Đường thẳng vuông góc với mặt phẳng có đáp án (Nhận biết)

71 người thi tuần này 4.6 4.7 K lượt thi 15 câu hỏi 25 phút

🔥 Đề thi HOT:

1010 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

25.8 K lượt thi 30 câu hỏi
723 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
551 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.3 K lượt thi 15 câu hỏi
369 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.3 K lượt thi 25 câu hỏi
354 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi
312 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.4 K lượt thi 10 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó a(P). Mệnh đề nào sau đây là sai?

Lời giải

Đáp án D

Các đáp án A, B, C đúng.

Đáp án D sai vì có thể xảy ra trường hợp b nằm trong (P).

Câu 2

Khẳng định nào sau đây sai?

Lời giải

Đáp án B

Đường thẳng d vuông góc với hai đường thẳng nằm trong (α) thì d(α) chỉ đúng khi hai đường thẳng đó cắt nhau.

Câu 3

Trong không gian cho đường thẳng Δ và điểm O. Qua O có mấy đường thẳng vuông góc với cho trước?

Lời giải

Đáp án D

Qua điểm O có thể dựng vô số đường thẳng vuông góc với , các đường thẳng đó cùng nằm trong một mặt phẳng vuông góc với Δ.

Câu 4

Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H,K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây sai?

Lời giải

Đáp án D

Vì H là trung điểm của AB, tam giác ABC cân tại C

Suy ra CHAB.

Ta có SA(ABC) ⇒ SACH mà CHAB suy ra CH(SAB).

Mặt khác AK(SAB) ⇒ CH vuông góc với các đường thẳng SA, SB, AK.

Và AKSB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

Câu 5

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là sai?

Lời giải

Đáp án C

Theo bài ra, ta có SA(ABC) mà BC(ABC) ⇒ SABC.

Tam giác ABC vuông tại B nên ABBC ⇒ BC(SAB) ⇒ BCAH.

Khi đó AHSBAHBCAH(SBC)AHSC

Nếu AHAC mà SAAC suy ra AC(SAH) ⇒ ACAB (vô lý).

Câu 6

Trong không gian tập hợp các điểm M cách đều hai điểm cố định A và B là

Lời giải

Đáp án A

Mặt phẳng trung trực của đoạn thẳng là tập hợp các điểm cách đều hai đầu mút của đoạn thẳng đó.

Câu 7

Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?

Lời giải

Đáp án D

Vì AH vuông góc với mp(BCD) suy ra AHCD (1)

Mà H là trực tâm của tam giác BCD ⇒ BHCD (2)

Từ (1), (2) suy ra CDAHCDBH⇒ CD(ABH) ⇒ CDAB.

Câu 8

Cho a, b, c là các đường thẳng trong không gian. Tìm mệnh đề sai trong các mệnh đề sau.

Lời giải

Đáp án A

Nếu abbc thì a,c có thể cắt nhau, trùng nhau, song song nên đáp án A sai.

Câu 9

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?

Lời giải

Đáp án C

Vì SA = SC ⇒ ΔSAC cân tại S mà O là trung điểm AC ⇒ SOAC.

Tương tự, ta cũng có SOBD

 mà ACBD = O(ABCD) ⇒ SO(ABCD).

Câu 10

Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây đúng?

Lời giải

Đáp án D

Gọi E là trung điểm của BC.

Khi đó ta có AEBCDEBC ⇒ BC(ADE) ⇒ BCAD.

Câu 11

Cho hình chóp S.ABC có SA(ABC) và ABBC. Số các mặt của tứ diện S.ABC là tam giác vuông là:

Lời giải

Đáp án D

Có ABBC ⇒ ΔABC là tam giác vuông tại B.

Ta có SA(ABC) ⇒ SAABSAACΔSAB, ΔSAC là các tam giác vuông tại A.

Mặt khác ABBCSABC ⇒ BC(SAB) ⇒ BCSB ⇒ ΔSBC là tam giác vuông tại B.

Vậy bốn mặt của tứ diện đều là tam giác vuông.

Câu 12

Cho hình chóp S.ABC có cạnh SA(ABC) và đáy ABC là tam giác cân ở C. Gọi H và K lần lượt là trung điểm của AB và SB. Khẳng định nào sau đây sai?

Lời giải

Đáp án D

Do ΔABC cân tại C nên CHAB.

Mà SA(ABC) ⇒ SACH.

Do đó CH(SAB) ⇒ CHHK, CHAK hay A, C đúng.

Ngoài ra HK // SA, SAAB ⇒ HKAB, mà ABCH ⇒ AB(CHK) hay B đúng.

D sai vì BC không vuông góc với AC nên không có BC(SAC).

Câu 13

Cho tứ diện ABCD có cạnh AB, BC, CD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

Lời giải

Đáp án A

Từ giả thiết ta có ABBCABCD ⇒ AB(BCD).

Do đó (AC,(BCD)) = (AC,BC) = ACB^

Câu 14

Cho chóp đều S.ABCD có cạnh đáy bằng 2, cạnh bên bằng 3. Gọi φ là góc giữa giữa cạnh bên và mặt đáy. Mệnh đề nào sau đây đúng?

Lời giải

Đáp án D

Gọi O là tâm mặt đáy (ABCD), suy ra SO(ABCD).

Vì SO(ABCD), suy ra OA là hình chiếu của SA trên mặt phẳng (ABCD).

Do đó (SA,ABCD^)=(SA,AO^)=SAO^

Tam giác vuông SOA, có tanSAO^SOAO=SB2BO2AO=142

Câu 15

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a và SA(ABCD). Biết SA = a63. Tính góc giữa SC và (ABCD).

Lời giải

4.6

947 Đánh giá

50%

40%

0%

0%

0%