Bộ 4 Đề kiểm tra học kì 2 Chuyên đề toán 11: Kiểm tra cuối kì có đáp án (Đề 1)

45 người thi tuần này 4.6 4.7 K lượt thi 30 câu hỏi 60 phút

🔥 Đề thi HOT:

1010 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

25.8 K lượt thi 30 câu hỏi
723 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
551 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.3 K lượt thi 15 câu hỏi
369 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.3 K lượt thi 25 câu hỏi
354 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi
312 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.4 K lượt thi 10 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Ba số hạng đầu tiên theo lũy thừa tăng dần của x trong khai triển 1+2x10  

Lời giải

Chọn C

Câu 2

Cho cấp số cộng un  u2=3  u4=7 . Giá trị của u15  bằng

Lời giải

Chọn C

Câu 3

Cho phép tịnh tiến Tu  biến điểm M thành M1  và phép tịnh tiến Tv  biến M1  thành M2 . Chọn khẳng định đúng trong các khẳng định sau

Lời giải

Chọn C

Câu 4

Điều kiện xác định của hàm số y=tanx+cotx  

Lời giải

Chọn A

Câu 5

Phương trình sinx+3cosx=1  có tập nghiệm là

Lời giải

Chọn C

Câu 6

Cho hai đường thẳng phân biệt a b cùng thuộc mp α . Có bao nhiêu vị trí tương đối giữa ab?

Lời giải

Chọn A

Câu 7

Tất cả các giá trị thực của tham số m để phương trình sinx=m  có nghiệm là.

Lời giải

Chọn A

Câu 8

Một hộp chứa 11 quả cầu gồm 5 quả cầu màu xanh và 6 quả cầu màu đỏ. Chọn ngẫu nhiên lần lượt hai quả cầu từ hộp đó. Xác suất để hai quả cầu được chọn ra cùng màu bằng

Lời giải

Chọn D

Câu 9

Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Giao tuyến của hai mặt phẳng (ABCD) và (AIJ) là

Lời giải

Chọn B

Câu 10

Nghiệm của phương trình sin4xcos4x=0  

Lời giải

Chọn D

Câu 11

Có 10 quyển sách Toán giống nhau, 11 quyển sách Lý giống nhau và 9 quyển sách Hóa giống nhau. Có bao nhiêu cách trao giải thưởng cho 15 học sinh có kết quả thi học kì cao nhất của lớp, biết mỗi phần thưởng là hai quyển sách khác loại?

Lời giải

Chọn D

Câu 12

Hàm số y=sin2x  nghịch biến trên các khoảng nào sau đây k ?

Lời giải

Đáp án D

Câu 13

Cho hình chữ nhật tâm O. Hỏi có bao nhiêu phép quay tâm O một góc α  với 0α<2π , biến hình chữ nhật trên thành chính nó?

Lời giải

Chọn A

Câu 14

Cho cấp số cộng un  u4=12,  u14=18 . Tổng 16 số hạng đầu tiên của cấp số cộng là 

Lời giải

Chọn B

Câu 15

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=2cos2x23sincosx+1  

Lời giải

Chọn B

Câu 16

Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100°?

Lời giải

Chọn B

Câu 17

Trong mặt phẳng Oxy cho đường thẳng d có phương trình x+y2=0 . Phép vị tự tâm O tỉ số k=-2 biến d thành đường thẳng nào trong các đường thẳng sau?

Lời giải

Chọn A

Câu 18

Cho cấp số nhân un  với u1=1;  q=110  . Số 110103  số hạng thứ mấy của un

Lời giải

Chọn D

Câu 19

Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=sinx+cosx2sinxcosx+3  lần lượt là

Lời giải

Chọn C

Câu 20

Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và chia hết cho 15?

Lời giải

Chọn B

Câu 21

a) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=cosx+cosxπ3 .

Lời giải

a) Ta có

y=cosx+cosxπ3=2cosx+xπ32cosxx+π32=3cosxπ6

1cosxπ61,  x nên 33cosxπ63,  x .

Vậy miny=3  khi cosxπ6=1x=7π6+k2π .

 maxy=3 khi cosxπ6=1x=π6+k2π .

Câu 22

b) Giải phương trình cos3xcos4x+cos5x=0 .

Lời giải

b) Ta có cos3xcos4x+cos5x=00cos3x+cos5x=cos4x

2cos4xcosx=cos4xcos4x=0cosx=12x=π8+kπ4x=±π3+k2πk

Câu 23

c) Tìm tất cả các giá trị thực của tham số m để phương trình cos2x2m+1cosx+m+1=0  có nghiệm

trên khoảng π2;  3π2

Lời giải

c) Ta có cos2x2m+1cosx+m+1=02cos2x2m+1cosx+m=0

cosx=12cosx=m

Media VietJack

Từ hình vẽ ta thấy phương trình cosx=12  không có nghiệm trên khoảng π2;  3π2 .

Do đó yêu cầu bài toán cosx=m  có nghiệm thuộc khoảng

π2;  3π21m<0

Câu 24

a) Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món ăn trong 5 món, một trong 5 loại quả tráng miệng và một trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn?

Lời giải

a) Để chọn thực đơn, ta có

* Có 5 cách chọn món ăn.

* Có 5 cách chọn quả tráng miệng.

* Có 3 cách chọn nước uống.

Vậy theo quy tắc nhân ta có 5x5x3=75 cách.

Câu 25

b) Chiếc kim của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong mười vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau?

Lời giải

b) Số phần tử của không gian mẫu nΩ=103

Gọi A là biến cố: “chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau”.

Lần quay 1: có 10 khả năng xảy ra.

Lần quay 2: có 9 khả năng xảy ra (không được trùng với lần quay 1).

Lần quay 3: có 8 khả năng xảy ra (không được trùng với lần quay 1, 2).

Ta có nA=10.9.8=720

Vậy xác suất cần tính là PA=nAnΩ=7201000=0,72

Câu 26

c) Một trường tiểu học có 50 học sinh đạt Danh hiệu Cháu ngoan Bác Hồ, trong đó có 4 cặp anh em sinh đôi. Cần chọn một nhóm 3 học sinh trong số 50 học sinh nói trên đi dự Đại hội cháu ngoan Bác Hồ. Tính xác suất để trong nhóm được chọn không có cặp anh em sinh đôi nào.

Lời giải

c) Không gian mẫu Ω  là chọn ngẫu nhiên 3 học sinh trong số 50 học sinh.

nΩ=C503

Gọi A¯  là biến cố: “Trong 3 học sinh được chọn có một cặp anh em sinh đôi”.

Ta có 

Chọn một cặp anh em sinh đôi trong 4 cặp anh em sinh đôi ta có C41 cách.

Chọn một học sinh còn lại trong 502=48  học sinh. Có 48 cách.

nA¯=48.C41

Suy ra PA=1PA¯=1nA¯nΩ=148.C41C503=12131225

Câu 27

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB, SC.

a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD).

Lời giải

Media VietJack

a) N là điểm chung của hai mặt phẳng (ABN) và (SCD).

Mặt khác AB // DC với ABABN;  CDSCD  nên giao tuyến của hai mặt

Qua N kẻ đường thẳng song song với CD cắt SD tại P.

Suy ra giao tuyến của hai mặt phẳng (ABN) và (SCD) là đường thẳng PN.

Câu 28

b) Chứng minh đường thẳng BN song song với mặt phẳng (SDM).

Lời giải

b) Ta có PN là đường trung bình của ∆SCD nên PN // CD và PN=12CD

Do M là trung điểm AB nên MB // CD và MB=12CD

Từ đó suy ra MPNP là hình bình hành =>   MP // NB.

MPSDM;  NBSDM nên NB // (SDM).

Vậy NB // (SDM).

Câu 29

c) Xác định các điểm I, J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD).

Lời giải

c) Trên mặt phẳng (ABCD), AC cắt BD tại O.

Trên mặt phẳng (SAC), PN cắt SO tại I.

ISOSBD;  IAN

Vậy I là giao điểm của AN và (SBD).

Tương tự, E là giao điểm của BD và MC.

J là giao điểm SE và MN.

Khi đó J chính là giao điểm của MN và (SBD)

Câu 30

d) Tính tỉ số  IBIJ

Lời giải

d) Ta có I, J, B thẳng hàng do chúng cùng thuộc giao tuyến của hai mặt phẳng (SBD) và (ABN).

Trong tam giác SAC có AN, SO là hai trung tuyến nên I là trọng tâm.

Trong tam giác ABC có BO, CM là hai đường trung tuyến nên E là trọng tâm.

Xét tam giác BOI có E, J, S thẳng hàng nên

EOEB.JBJI.SISO=112.JBJI.23=1JBJI=3
4.6

941 Đánh giá

50%

40%

0%

0%

0%