100 câu trắc nghiệm Vecto trong không gian nâng cao (phần 1)

133 người thi tuần này 4.6 6.6 K lượt thi 25 câu hỏi 35 phút

🔥 Đề thi HOT:

1010 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

25.8 K lượt thi 30 câu hỏi
723 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
551 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.3 K lượt thi 15 câu hỏi
369 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.3 K lượt thi 25 câu hỏi
354 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi
312 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.4 K lượt thi 10 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau, biết AB=AC=AD=1. Số đo góc giữa hai đường thẳng AB và CD bằng

Lời giải

Câu 2

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a2. Tính khoảng cách giữa hai đường thẳng SA và BC

Lời giải

Câu 3

Cho tứ diện ABCD có AB=AC và DB=DC. Khẳng định nào sau đây đúng?

Lời giải

Câu 4

Cắt hình chóp tứ giác bởi mặt phẳng vuông góc với đường cao của hình chóp thiết diện là hình gì?

Lời giải

Chọn C

Mặt phẳng vuông góc với đường cao sẽ song song với đáy nên cắt hình chóp theo tứ giác đồng dạng với đáy.

Câu 5

Chọn mệnh đề đúng trong các mệnh đề sau đây:

Lời giải

Câu 6

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, SA=3a và SA vuông góc với mặt đáy. Góc giữa đường thẳng SD và mặt phẳng (ABCD) là

Lời giải

Câu 7

Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

Lời giải

Chọn C

Dựa vào định nghĩa hai đường thẳng vuông góc trong không gian ta suy ra đáp án C đúng.

Câu 8

Cho tứ diện ABCD. Hỏi có bao nhiêu vectơ khác vectơ 0 mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD ?

Lời giải

Chọn A

Số vectơ khác vectơ 0mà mỗi vectơ có điểm đầu, điểm cuối là hai đỉnh của tứ diện ABCD là số các chỉnh hợp chập 2 của 4 phần tử => số vectơ là A42=12

Câu 9

Trong hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào sai?

Lời giải

Chọn A

hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng nhau nên các tứ giác ABCD, A'B'BA, B’C’CB đều là hình thoi nên ta có

Câu 10

Trong các mệnh đề sau, mệnh đề nào sai

Lời giải

Chọn C

Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể song song hoặc chéo nhau.

Đáp án C chỉ đúng trong mặt phẳng. 

Câu 11

Chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Chọn B

Đáp án A sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.

Ví dụ: Cho lập phương ABCD. A'B'C'D' ta có AA'ABADABDễ thấy AA' và AD cắt nhau.

Đáp án C sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.

Đáp án D sai do trong không gian hai đường thẳng không có điểm chung thì có thể chéo nhau.

Câu 12

Chọn mệnh đề đúng trong các mệnh đề sau đây:

Lời giải

Chọn B

Hiển nhiên B đúng.

+ Từ 1 điểm và 1 mặt phẳng  (P) cho trước ta dựng được duy nhất 1 đường thẳng d  đi qua điểm đó và vuông góc với mặt phẳng đã cho.Các mặt phẳng chứa đường thẳng d đều vuông góc với mặt phẳng ( P) . Mà  có vô số mặt phẳng chứa đường thẳng d đó. Do đó, A sai.

+ Xét phương án C. Nếu  ta chọn 2 mặt phẳng (α) và (β) trùng nhau thì khi đó (α) và (β) không thể vuông góc với nhau. Do đó, C sai.

+ Xét phương án D. Cho trước 1 đường thẳng ( d) và lấy 1 điểm M bất kì nằm trên (d) khi  đó ta xác định được duy nhất 1 mặt phẳng (P) qua M và vuông góc với ( d) . Nhưng do điểm M là tuỳ ý trên ( d) nên sẽ có vô số mặt phẩng vuông góc với đường thẳng ( d) cho trước đó.

Do đó D sai.

Câu 13

Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chọn khẳng định sai trong các khẳng định sau?

Lời giải

Câu 14

Cho hình chóp S. ABCD có đáy ABCD là hình vuông và SA vuông góc đáy. Mệnh đề nào sau đây sai?

Lời giải

Câu 15

Cho hình lập phương ABCD. A’BC’D’. Tính góc giữa mặt phẳng (ABCD) và (ACC’A’).

Lời giải

Câu 16

Cho hình lập phương ABCD. A’B’C’D’ (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A’D bằng

Lời giải

Câu 17

Cho hình hộp chữ nhật ABCD. A’B’C’D’. Khoảng cách giữa hai mặt phẳng (ABCD) và (A’B’C’D’) bằng

Lời giải

Chọn D

Ta có 2 mặt phẳng ( ABCD) và ( A’B’C’D’) là 2 mặt phẳng song song nên

d((ABCD), (A’B’C’D’))=  d( A; (A'B'C'D'))=AA’ ( AA’ là đoạn vuông góc chung của 2 mặt phẳng)

Câu 18

Cho hình chóp S. ABCD có đáy là hình vuông cạnh a. SA=a2 và SA vuông góc mặt phẳng đáy. Góc giữa cạnh bên SC với đáy bằng

Lời giải

Câu 19

Trong không gian, khẳng định nào sau đây sai.

Lời giải

Chọn B

Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì  có thể song song với nhau ( khi 2 đường thẳng đó đồng  phẳng ) hoặc chéo nhau ; cũng có thể cắt và vuông góc với nhau( ví dụ hình lập phương ABCD. A’B’C’D’ có AB và AD cùng vuông góc với AA’ nhưng chúng ở vị trí cắt và vuông góc với nhau)

Câu 20

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P), trong đó aP. Mệnh đề nào sau đây là sai?

Lời giải

Chọn C

C sai do b có thể nằm trong (P)

Câu 21

Cho lăng trụ đứng ABC. A’B’C’ có tất cả các cạnh bằng a và  có G, G' lần lượt là trọng tâm của hai tam giác ABC và A’B’C’ (tham khảo hình vẽ).

Thiết diện tạo bởi mặt phẳng (AGG') với hình lăng trụ đã cho là

Lời giải

Chọn D

Gọi M, M' lần lượt là trung điểm của BC và B’C’. Khi đó thiết diện của lăng trụ tạo bởi mặt phẳng (AGG') là hình chữ nhật AMM'A’.

Mà AM=a.sin600=a32AA

Nên AMM’A’ không thể là hình vuông.

Câu 22

Cho hình chóp tam giác S. ABC có SA vuông góc với mặt phẳng (ABC), AB=6, BC=8, AC=10. Tính khoảng cách d giữa hai đường thẳng SA và BC.

Lời giải

Chọn C

Theo giả thiết ta có: AB2+BC2=AC2 nên theo định lý pytago đảo tam giác ABC vuông tại B.

Nên AB là đoạn vuông góc chung của SA và BC.

Vậy d(SA;BC)=AB=6.

Câu 23

Cho hình chóp S. ABCD đáy là hình vuông cạnh a, tâm O. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Gọi αlà góc tạo bởi đường thẳng SC và mặt phẳng đáy. Mệnh đề nào sau đây đúng?

Lời giải

Câu 24

Cho hình chóp S. ABCD có đáy là hình bình hành, cạnh bên SA vuông góc với đáy. Biết khoảng cách từ A đến (SBD) bằng 6a7. Tính khoảng cách từ C đến mặt phẳng (SBD) ?

Lời giải

Câu 25

Cho hình lập phương ABCD. A'B'C'D'. Góc giữa hai đường thẳng BA' và CD bằng

Lời giải

4.6

1322 Đánh giá

50%

40%

0%

0%

0%