35 câu Trắc nghiệm Toán 11 Bài 4: Hai mặt phẳng vuông góc có đáp án (Mới nhất)
63 người thi tuần này 4.6 2.9 K lượt thi 35 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Chọn C
Lời giải
Câu 3
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và có một cạnh bên vuông góc với đáy. Xét bốn mặt phẳng chứa bốn mặt bên và mặt phẳng chứa mặt đáy. Trong các mệnh đề sau mệnh đề nào đúng?
Lời giải
Lời giải
Chọn D
Lời giải
Lời giải
Chọn D
Câu 7
Cho hai mặt phẳng và vuông góc với nhau và gọi
I. Nếu và thì
II. Nếu thì
III. Nếu thì hoặc
IV. Nếu thì và
Các mệnh đề đúng là :
Cho hai mặt phẳng và vuông góc với nhau và gọi
I. Nếu và thì
II. Nếu thì
III. Nếu thì hoặc
IV. Nếu thì và
Các mệnh đề đúng là :
Lời giải
Chọn D.
Câu 8
Cho hai mặt phẳng (P) và (Q) cắt nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Lời giải
Lời giải
Lời giải
Câu 11
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Lời giải
Qua M dựng đường thẳng d vuông cóc với (P) và (Q). Khi đó có vô số mặt phẳng xoay quanh d thỏa yêu cầu bài toán.
Lời giải
Chọn D.
Lời giải
Chọn A.

Lời giải
Chọn D

Lời giải

Lời giải
Chọn C.
Lời giải
Chọn C
Lời giải
Chọn A
Giả sử AB là đoạn vuông góc chung của a và b thì mà
Câu 19
Cho các mệnh đề sau với và là hai mặt phẳng vuông góc với nhau với giao tuyến và a, b, c, d là các đường thẳng. Các mệnh đề sau, mệnh đề nào đúng?
Lời giải
Chọn C
Do nênLời giải
Câu A sai vì a, b có thể trùng nhau.
Câu C sai vì khi a, b cắt nhau, mặt phẳng (a, b) không vuông góc với a
Câu D sai vì khi a, b chéo nhau và vuông góc với nhau, ta gọi là mặt phẳng chứa a , song song với b và là mặt phẳng chứa b và song song với a thì
Lời giải
Chọn đáp án D
Mệnh đề A sai vì có thể xảy ra trường hợp hai mặt phẳng vuông góc với nhau nhưng đường thẳng thuộc mặt phẳng này song song với mặt phẳng kia.
Mệnh đề B sai vì xảy ra trường hợp hai mặt phẳng song song.
Mệnh đề C sai vì xảy ra trường hợp hai mặt phẳng vuông góc.
Lời giải
Mệnh đề sai vì còn trường hợp chéo nhau hoặc trùng nhau.
Mênh đề C sai vì còn trường hợp hai đường thẳng chéo nhau.
Mênh đề D sai vì còn trường hợp hai mặt phẳng vuông góc với nhau.
Lời giải
Chọn D

* Có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước, chúng nằm trong mặt phẳng đi qua điểm đó và vuông góc với một đường thẳng cho trước => “Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước”: SAI
* Có vô số mặt phẳng đi qua một đường thẳng cho trước và vuông góc với một mặt phẳng cho trước, trong trường hợp: đường thẳng cho trước vuông góc với mặt phẳng cho trước => "Có duy nhất một mặt phẳng đi qua một đường thẳng cho trước và vuông góc với một mặt phẳng cho trước”: SAI
* Có vố số mặt phẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước => ”Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước”: SAI
Câu 24
Cho hình chóp S.ABC có đường cao SH. Xét các mệnh đề sau:
(I) SA = SB = SC
(II) H trùng với tâm đường tròn ngoại tiếp tam giác ABC .
(III) Tam giác ABC là tam giác đều.
(IV) H là trực tâm tam giác ABC .
Các yếu tố nào chưa đủ để kết luận S.ABC là hình chóp đều?
Cho hình chóp S.ABC có đường cao SH. Xét các mệnh đề sau:
(I) SA = SB = SC
(II) H trùng với tâm đường tròn ngoại tiếp tam giác ABC .
(III) Tam giác ABC là tam giác đều.
(IV) H là trực tâm tam giác ABC .
Các yếu tố nào chưa đủ để kết luận S.ABC là hình chóp đều?Lời giải
Lời giải
Chọn A
Lời giải
Chọn D.
A. Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.
B. Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.
C. Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.
D. Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.
Lời giải
Chọn B
Lời giải
Chọn B
A sai vì đáy có thể là hình bình hành.
B đúng
C sai vì đáy có thể là hình bình hành
D sai vì đáy có thể là hình bình hành.
Lời giải

Câu 30
Hình hộp ABCD.A'B'C'D' trở thành hình lăng trụ tứ giác đều khi phải thêm các điều kiện nào sau đây?
Hình hộp ABCD.A'B'C'D' trở thành hình lăng trụ tứ giác đều khi phải thêm các điều kiện nào sau đây?
Lời giải
Chọn C
Lời giải
Chọn A
Ta có suy ra Hình hộp ABCD.A'B'C'D' là hình lập phương.
Lời giải
Chọn D
Lời giải
Chọn A
Lời giải
Chọn D
Giả sử lăng trụ ABC.A'B'C' có các mặt bên (AA'B'B), (AA'C'C) là hình chữ nhật, khi đó ta có . Vậy ABC.A'B'C' là lăng trụ đứng.
Theo định nghĩa hình chóp đều và hình lăng trụ đều ta có đáp án B, C đúng.
Đáp án D sai.
Câu 35
Cho (P) và (Q) là hai mặt phẳng vuông góc với nhau và giao tuyến của chúng là đường thẳng m. Gọi a, b, c, d là các đường thẳng. Trong các mệnh đề sau, mệnh đề nào đúng?
Lời giải
Chọn A
Áp dụng hệ quả 1: Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
588 Đánh giá
50%
40%
0%
0%
0%