109 câu Trắc nghiệm Toán 11 Dạng 1: Tính đạo hàm tại một điểm bằng công thức hoặc bằng mtct có đáp án (Mới nhất)
56 người thi tuần này 4.6 2 K lượt thi 24 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Hàm số \(y = f\left( x \right) = \frac{2}{{\cos \left( {\pi x} \right)}}\) có \(f'\left( 3 \right)\) bằng:
Hàm số \(y = f\left( x \right) = \frac{2}{{\cos \left( {\pi x} \right)}}\) có \(f'\left( 3 \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn D.
\(f'\left( x \right) = \frac{2}{{\cos \left( {\pi x} \right)}} = 2.\left( {\cos \left( {\pi x} \right)} \right)'.\frac{{ - 1}}{{{{\cos }^2}\left( {\pi x} \right)}} = 2.\pi \frac{{\sin \left( {\pi x} \right)}}{{{{\cos }^2}\left( {\pi x} \right)}}\).
\(f'\left( 3 \right) = 2\pi .\frac{{\sin 3\pi }}{{{{\cos }^2}3\pi }} = 0\).
Lời giải
Hướng dẫn giải:
Chọn B.
\(y' = \left( {\cos 3x} \right)'\sin 2x + \cos 3x\left( {\sin 2x} \right)' = - 3\sin 3x.\sin 2x + 2\cos 3x.\cos 2x\).
\(y'\left( {\frac{\pi }{3}} \right) = - 3\sin 3\frac{\pi }{3}.\sin 2\frac{\pi }{3} + 2\cos 3\frac{\pi }{3}.\cos 2\frac{\pi }{3} = 1\).
Câu 3
Cho hàm số \(y = \frac{{\cos 2x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Cho hàm số \(y = \frac{{\cos 2x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn D.
\(y' = \frac{{\left( {\cos 2x} \right)'.\left( {1 - \sin x} \right) - \cos 2x\left( {1 - \sin x} \right)'}}{{{{\left( {1 - \sin x} \right)}^2}}} = \frac{{ - 2\sin 2x\left( {1 - \sin x} \right) + \cos 2x.cosx}}{{{{\left( {1 - \sin x} \right)}^2}}}\).
\[y'\left( {\frac{\pi }{6}} \right) = \frac{{ - 2.\frac{{\sqrt 3 }}{2}\left( {1 - \frac{1}{2}} \right) + \frac{1}{2}.\frac{{\sqrt 3 }}{2}}}{{{{\left( {1 - \frac{1}{2}} \right)}^2}}} = \frac{{ - \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{4}}}{{\frac{1}{4}}} = 4\left( { - \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{4}} \right) = - 2\sqrt 3 + \sqrt 3 = - \sqrt 3 \].
Câu 4
Cho hàm số \(y = f\left( x \right) = \sin \sqrt x + \cos \sqrt x \). Giá trị \(f'\left( {\frac{{{\pi ^2}}}{{16}}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn A.
\(f'\left( x \right) = \frac{1}{{2\sqrt x }}\cos \sqrt x - \frac{1}{{2\sqrt x }}\sin \sqrt x = \frac{1}{{2\sqrt x }}\left( {\cos \sqrt x - \sin \sqrt x } \right)\).
\(f'\left( {\frac{{{\pi ^2}}}{{16}}} \right) = \frac{1}{{2\sqrt {{{\left( {\frac{\pi }{4}} \right)}^2}} }}\left( {\cos \sqrt {{{\left( {\frac{\pi }{4}} \right)}^2}} - \sin \sqrt {{{\left( {\frac{\pi }{4}} \right)}^2}} } \right) = \frac{1}{{2.\frac{{\sqrt 2 }}{2}}}\left( {\frac{{\sqrt 2 }}{2} - \frac{{\sqrt 2 }}{2}} \right) = 0\).
Câu 5
Cho hàm số \(y = f\left( x \right) = \sqrt {\tan x + \cot x} \). Giá trị \(f'\left( {\frac{\pi }{4}} \right)\) bằng:
Cho hàm số \(y = f\left( x \right) = \sqrt {\tan x + \cot x} \). Giá trị \(f'\left( {\frac{\pi }{4}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn C.
\(y = \sqrt {\tan x + \cot x} \Rightarrow {y^2} = \tan x + \cot x \Rightarrow y'.2y = \frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}\).
\( \Rightarrow y' = \frac{1}{{2\sqrt {\tan x + \cot x} }}\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)\).
\(f'\left( {\frac{\pi }{4}} \right) = \frac{1}{{2\sqrt {\tan \frac{\pi }{4} + \cot \frac{\pi }{4}} }}\left( {\frac{1}{{{{\cos }^2}\left( {\frac{\pi }{4}} \right)}} - \frac{1}{{{{\sin }^2}\left( {\frac{\pi }{4}} \right)}}} \right) = \frac{1}{{2\sqrt 2 }}\left( {2 - 2} \right) = 0\)
Câu 6
Cho hàm số \(y = f\left( x \right) = \frac{1}{{\sqrt {\sin x} }}\). Giá trị \(f'\left( {\frac{\pi }{2}} \right)\) bằng:
Cho hàm số \(y = f\left( x \right) = \frac{1}{{\sqrt {\sin x} }}\). Giá trị \(f'\left( {\frac{\pi }{2}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn C.
\(y = \frac{1}{{\sqrt {\sin x} }} \Rightarrow {y^2} = \frac{1}{{\sin x}} \Rightarrow y'2y = \frac{{ - \cos x}}{{{{\sin }^2}x}}\).
\[ \Rightarrow y' = \frac{1}{{2y}}.\left( {\frac{{ - \cos x}}{{{{\sin }^2}x}}} \right) = \frac{1}{{\frac{2}{{\sqrt {\sin x} }}}}\left( {\frac{{ - \cos x}}{{{{\sin }^2}x}}} \right) = \frac{{ - \sqrt {\sin x} }}{2}.\frac{{\cos x}}{{{{\sin }^2}x}}\].
\(f'\left( {\frac{\pi }{2}} \right) = \frac{{ - \sqrt {\sin \left( {\frac{\pi }{2}} \right)} }}{2}.\frac{{\cos \left( {\frac{\pi }{2}} \right)}}{{{{\sin }^2}\left( {\frac{\pi }{2}} \right)}} = \frac{{ - 1}}{2}.\frac{0}{1} = 0\).
Câu 7
Xét hàm số \(y = f\left( x \right) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\). Tính giá trị \(f'\left( {\frac{\pi }{6}} \right)\) bằng:
Xét hàm số \(y = f\left( x \right) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\). Tính giá trị \(f'\left( {\frac{\pi }{6}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn D.
\(f'\left( x \right) = 2\cos \left( {\frac{{5\pi }}{6} + x} \right)\).
\(f'\left( {\frac{\pi }{6}} \right) = - 2\).
Câu 8
Cho hàm số \(y = f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\). Giá trị \(f'\left( 0 \right)\) bằng:
Cho hàm số \(y = f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\). Giá trị \(f'\left( 0 \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn A.
\(y' = \frac{1}{{{{\cos }^2}\left( {x - \frac{{2\pi }}{3}} \right)}}\).
\(f'\left( 0 \right) = 4\).
Câu 9
Cho hàm số \(y = \frac{{\cos x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Cho hàm số \(y = \frac{{\cos x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Lời giải
Hướng dẫn giải:
Chọn D.
Ta có \(y' = \frac{{ - \sin x\left( {1 - \sin x} \right) + {{\cos }^2}x}}{{{{\left( {1 - \sin x} \right)}^2}}} = \frac{1}{{1 - \sin x}}\).
\(y'\left( {\frac{\pi }{6}} \right) = \frac{1}{{1 - \sin \frac{\pi }{6}}} = 2\).
Lời giải
Hướng dẫn giải:
Chọn C.
Lời giải
Hướng dẫn giải:
Chọn B.
Suy ra
Câu 12
Cho hàm số \(y = f(x) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\). Biểu thức \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) bằng
Cho hàm số \(y = f(x) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\). Biểu thức \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) bằng
Lời giải
Hướng dẫn giải:
Chọn C.
\(f'\left( x \right) = \frac{{ - 2\cos x\sin x\left( {1 + {{\sin }^2}x} \right) - 2\cos x\sin x{{\cos }^2}x}}{{{{\left( {1 + {{\sin }^2}x} \right)}^2}}}\)
\( = \frac{{ - 2\cos x\sin x\left( {1 + {{\sin }^2}x + {{\cos }^2}x} \right)}}{{{{\left( {1 + {{\sin }^2}x} \right)}^2}}} = \frac{{ - 4\cos x\sin x}}{{{{\left( {1 + {{\sin }^2}x} \right)}^2}}}\)\( \Rightarrow f'\left( {\frac{\pi }{4}} \right) = \frac{{ - 8}}{9}\)
\(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right) = \frac{1}{3} + \frac{8}{3} = 3\).
Câu 13
Cho hàm số \(y = f\left( x \right) = {\sin ^3}5x.{\cos ^2}\frac{x}{3}\). Giá trị đúng của \(f'\left( {\frac{\pi }{2}} \right)\) bằng
Cho hàm số \(y = f\left( x \right) = {\sin ^3}5x.{\cos ^2}\frac{x}{3}\). Giá trị đúng của \(f'\left( {\frac{\pi }{2}} \right)\) bằng
Lời giải
Hướng dẫn giải:
Chọn A.
\(f'\left( x \right) = 3.5.\cos 5x.{\sin ^2}5x.{\cos ^2}\frac{x}{3} - {\sin ^3}5x \cdot \frac{2}{3} \cdot \sin \frac{x}{3} \cdot \cos \frac{x}{3}\)
\(f'\left( {\frac{\pi }{2}} \right) = 0 - 1.\frac{{\sqrt 3 }}{{2.3}} = - \frac{{\sqrt 3 }}{6} \cdot \)
Câu 14
Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị \(f'\left( 0 \right)\) bằng
Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị \(f'\left( 0 \right)\) bằng
Lời giải
Hướng dẫn giải:
Chọn B.
\[f'\left( x \right) = \frac{1}{{{{\cos }^2}\left( {x - \frac{{2\pi }}{3}} \right)}} \Rightarrow f'\left( 0 \right) = \frac{1}{{\frac{1}{4}}} = 4\].
Lời giải
Hướng dẫn giải:
Chọn A.
\(f'\left( x \right) = \frac{{ - \sin x.\left( {1 + 2\sin x} \right) - \cos x.2.\cos x}}{{{{\left( {1 + 2\sin x} \right)}^2}}} = \frac{{ - \sin x - 2}}{{{{\left( {1 + 2\sin x} \right)}^2}}}\)
\(f'\left( {\frac{\pi }{6}} \right) = \frac{{ - 5}}{8};f'\left( 0 \right) = - 2;f'\left( {\frac{\pi }{2}} \right) = \frac{{ - 1}}{3};f'\left( \pi \right) = - 2\).
Câu 16
Cho hàm số \(y = \frac{{\sqrt 2 }}{{\cos 3x}}\). Khi đó \(y'\left( {\frac{\pi }{3}} \right)\) là:
Cho hàm số \(y = \frac{{\sqrt 2 }}{{\cos 3x}}\). Khi đó \(y'\left( {\frac{\pi }{3}} \right)\) là:
Lời giải
Hướng dẫn giải:
Chọn D.
Ta có: \[y' = - \sqrt 2 .\frac{{{{\left( {\cos 3x} \right)}^\prime }}}{{{{\cos }^2}3x}} = \frac{{3\sqrt 2 .\sin 3x}}{{{{\cos }^2}3x}}\]. Do đó \(y'\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 2 .\sin \pi }}{{{{\cos }^2}\pi }} = 0\)
Câu 17
Cho hàm số\[y = f\left( x \right) = \sin (\pi \sin x)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng:
Lời giải
Hướng dẫn giải:
Chọn D.
Ta có: \(y' = (\pi .\sin x)'.\cos (\pi .\sin x) = \pi .\cos x.\cos (\pi .\sin x)\)
\( \Rightarrow y'\left( {\frac{\pi }{6}} \right) = \pi .\cos \frac{\pi }{6}.\cos \left( {\pi .\sin \frac{\pi }{6}} \right) = \pi .\frac{{\sqrt 3 }}{2}.\cos \left( {\pi .\frac{1}{2}} \right) = \frac{{\sqrt 3 .\pi }}{2}.\cos \frac{\pi }{2} = 0\)
Câu 18
Cho hàm số \[y = f\left( x \right) = \sin \sqrt x + \cos \sqrt x \]. Giá trị \[f'\left( {\frac{{{\pi ^2}}}{{16}}} \right)\] bằng
Cho hàm số \[y = f\left( x \right) = \sin \sqrt x + \cos \sqrt x \]. Giá trị \[f'\left( {\frac{{{\pi ^2}}}{{16}}} \right)\] bằng
Lời giải
Hướng dẫn giải:
Chọn B.
Ta có: \[f'\left( x \right) = \frac{1}{{2\sqrt x }}\cos \sqrt x - \frac{1}{{2\sqrt x }}\sin \sqrt x \] \[ \Rightarrow f'\left( {\frac{{{\pi ^2}}}{{16}}} \right) = 0\]
Câu 19
Hàm số \[y = f\left( x \right) = \frac{2}{{\cot \left( {\pi x} \right)}}\] có \(f'\left( 3 \right)\) bằng
Hàm số \[y = f\left( x \right) = \frac{2}{{\cot \left( {\pi x} \right)}}\] có \(f'\left( 3 \right)\) bằng
Lời giải
Hướng dẫn giải:
Chọn C.
Ta có: \[f'\left( x \right) = - \frac{{2{{\left[ {\cot \left( {\pi x} \right)} \right]}^\prime }}}{{{{\cot }^2}\left( {\pi x} \right)}} = 2\pi \frac{{1 + {{\cot }^2}\left( {\pi x} \right)}}{{{{\cot }^2}\left( {\pi x} \right)}}\] \( \Rightarrow f'\left( 3 \right) = 2\pi \).
Câu 20
Xét hàm số \[f(x) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng
Xét hàm số \[f(x) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng
Lời giải
Hướng dẫn giải:
Chọn D.
Ta có:\(f'\left( x \right) = 2\cos \left( {\frac{{5\pi }}{6} + x} \right) \Rightarrow f'\left( {\frac{\pi }{6}} \right) = - 2\)
Câu 21
Cho hàm số \[y = f(x) = \sqrt {\tan x + \cot x} \]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng
Cho hàm số \[y = f(x) = \sqrt {\tan x + \cot x} \]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng
Lời giải
Hướng dẫn giải:
Chọn B.
Ta có:\(f'\left( x \right) = \frac{{{{\left( {{\rm{tan}}x + \cot x} \right)}^\prime }}}{{2\sqrt {{\rm{tan}}x + \cot x} }} = \frac{{\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}}}{{2\sqrt {{\rm{tan}}x + \cot x} }} \Rightarrow f'\left( {\frac{\pi }{4}} \right) = 0.\)
Câu 22
Cho \[f\left( x \right) = {\cos ^2}x - {\sin ^2}x\]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng:
Cho \[f\left( x \right) = {\cos ^2}x - {\sin ^2}x\]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng:
Lời giải
Hướng dẫn giải:
Chọn C.
Ta có:\(f\left( x \right) = \cos 2x \Rightarrow f'\left( x \right) = - 2\sin 2x\). Do đó \[f'\left( {\frac{\pi }{4}} \right) = - 2\]
Câu 23
Cho hàm số \(y = f(x) = \frac{{\cos x}}{{1 - \sin x}}\). Giá trị biểu thức \(f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right)\) là
Cho hàm số \(y = f(x) = \frac{{\cos x}}{{1 - \sin x}}\). Giá trị biểu thức \(f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right)\) là
Lời giải
Hướng dẫn giải:
Chọn A.
Ta có:\(f'\left( x \right) = \frac{{{{\left( {\cos x} \right)}^\prime }\left( {1 - {\mathop{\rm s}\nolimits} {\rm{in}}x} \right) - (1 - {\mathop{\rm s}\nolimits} {\rm{in}}x)'cosx}}{{{{\left( {1 - {\mathop{\rm s}\nolimits} {\rm{in}}x} \right)}^2}}} = \frac{1}{{1 - {\mathop{\rm s}\nolimits} {\rm{in}}x}} \Rightarrow f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right) = \frac{4}{3}\)
Câu 24
Tính \(\frac{{f'\left( 1 \right)}}{{\varphi '\left( 0 \right)}}\). Biết rằng : \(f(x) = {x^2}\) và \(\varphi (x) = 4x + \sin \frac{{\pi x}}{2}\).
Tính \(\frac{{f'\left( 1 \right)}}{{\varphi '\left( 0 \right)}}\). Biết rằng : \(f(x) = {x^2}\) và \(\varphi (x) = 4x + \sin \frac{{\pi x}}{2}\).
Lời giải
Hướng dẫn giải:
Chọn D.
\(f'(x) = 2x \Rightarrow f'(1) = 2;\varphi '(x) = 4 + \frac{\pi }{2}\cos \frac{{\pi x}}{2} \Rightarrow \varphi '(0) = 4 + \frac{\pi }{2}\)
Suy ra \(\frac{{f'(1)}}{{\varphi '(0)}} = \frac{4}{{8 + \pi }}\).
399 Đánh giá
50%
40%
0%
0%
0%