Đề số 8

  • 2266 lượt thi

  • 50 câu hỏi

  • 90 phút

Câu 1:

Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 2a, chiều cao cạnh bên bằng 3a.Tính thể tích V của khối chóp đã cho.

Xem đáp án

Chọn B.

* Diện tích đáy là: SABCD=AB2=(2a)2=4a2.

Cho hình chóp tứ giác đều có cạnh đáy bằng chiều cao cạnh bên bằng Tính thể tích của khối chóp đã cho.D. \(V = \frac{{4{a^3}}}{3}.\) (ảnh 6)

* Gọi Cho hình chóp tứ giác đều có cạnh đáy bằng chiều cao cạnh bên bằng Tính thể tích của khối chóp đã cho.D. \(V = \frac{{4{a^3}}}{3}.\) (ảnh 7)là tâm của \(ABCD\) ta có SO(ABCD)SO=3a, thể tích V của khối chóp đã cho là: V=13SABCD.SO=13.4a2.3a=4a3.


Câu 2:

Cho hai số thực dương a và b. Biểu thức abbaab35 được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

Xem đáp án

Chọn D.

Ta có: abbaab35=ab5ba15ab30=(ab)15.(ab)115.(ab)130=(ab)16.


Câu 3:

Gọi M,m thứ tự là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\) trên đoạn [-2;0] Tính P=M+m.

Xem đáp án

Chọn D.

Ta có y'=x22x3(x1)2 suy ra y'=0x22x3=0[x=1x=3.

Xét trên [-2;0] ta có f(2)=73,f(1)=2 và \(f\left( 0 \right) = - 3.\)

Vậy M=max[2;0]f(x)=2 m=min[2;0]f(x)=3, do đó P=M+m=5.


Câu 4:

Tổng tất cả các giá trị nguyên của m để hàm số \(y = \frac{1}{3}{x^3} - \left( {m - 1} \right){x^2} + x - m\) đồng biến trên tập xác định bằng.

Xem đáp án

Chọn A.

Tập xác định D=.

Ta có y'=x22(m1)x+1, để hàm số đồng biến với \(\forall x \in D\) thì y'0,xΔ'0m22m00m2m nên m={0;1;2}. Vậy đáp án là A.


Câu 5:

Tính thể tích của khối chóp có chiều cao h và diện tích đáy là \(B\) là

Xem đáp án

Chọn A.

Áp dụng công thức tính thể tích khối chóp ta chọn đáp án A.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Bài thi liên quan

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận