Thi Online [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề)
Đề số 19
-
2264 lượt thi
-
50 câu hỏi
-
90 phút
Câu 1:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Dựa vào đồ thị ta có đồ thị trên là đồ thị hàm bậc bốn trùng phương có bề lõm hướng xuống nên hệ số \(a < 0\) nên loại đáp án A và D.
Xét điểm \(\left( {1;2} \right)\) thuộc đồ thị hàm số trên.
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + {x^2} + 1\) ta được 2 =1 (vô lý).
Thay \(\left( {1;2} \right)\) vào \(y = - {x^4} + 2{x^2} + 1\) ta được 2 = 2 (đúng).
Nên đồ thị trong hình vẽ trên là đồ thị của hàm số \(y = - {x^4} + 2{x^2} + 1.\)
Đáp án A
Câu 2:
Số nghiệm của phương trình\(\frac{{\sin 2x}}{{\cos x + 1}} = 0\) trên đoạn \(\left[ {0;2020\pi } \right]\) là
Điều kiện: \(\cos x + 1 \ne 0 \Leftrightarrow x \ne \pi + l2\pi \left( {l \in \mathbb{Z}} \right)\).
Ta có:
\(\frac{{\sin 2x}}{{\cos x + 1}} = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow 2x = k\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + m\pi \left( {m \in \mathbb{Z}} \right)\\x = n2\pi \left( {n \in \mathbb{Z}} \right)\\x = \pi + p2\pi \left( {p \in \mathbb{Z}} \right)\end{array} \right.\)
So lại với điều kiện, phương trình có họ nghiệm là \(\left[ \begin{array}{l}x = \frac{\pi }{2} + m\pi \left( {m \in \mathbb{Z}} \right)\\x = n2\pi \left( {n \in \mathbb{Z}} \right)\end{array} \right..\)
Xét \(0 \le \frac{\pi }{2} + m\pi \le 2020\pi \Leftrightarrow - \frac{\pi }{2} \le m\pi \le \frac{{4039}}{2}\pi \Leftrightarrow - \frac{1}{2} \le m \le \frac{{4039}}{2}.\) Vì \(m \in \mathbb{Z}\) nên có 2002 giá trị \(m\) thỏa mãn đề bài.
Xét \(0 \le n2\pi \le 2020\pi \Leftrightarrow 0 \le n\pi \le 1010.\) Vì \(n \in \mathbb{Z}\) nên có 1011 giá trị \(n\) thỏa mãn đề bài.
Vậy phương trình có tổng cộng 3031 nghiệm trên đoạn \(\left[ {0;2020\pi } \right].\)
Đáp án C
Câu 3:
Số nghiệm của phương trình \[{\log _4}\left( {3{x^2} + x} \right) = \frac{1}{2}\] là
Ta có \({\log _4}\left( {3{x^2} + x} \right) = \frac{1}{2} \Leftrightarrow 3{x^2} + x = 2\)
\( \Leftrightarrow 3{x^2} + x - 2 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - \frac{2}{3}\end{array} \right..\)
Vậy phương trình có hai nghiệm.
Đáp án D
Câu 5:
Khối chóp có một nửa diện tích đáy là \(S\), chiều cao là \(2h\) thì có thể tích là:
Áp dụng công thức thể tích khối chóp ta có: \(V = \frac{1}{3}.2S.2h = \frac{4}{3}S.h\)
Vậy chọn đáp án D.
Bài thi liên quan
Đánh giá trung bình
0%
0%
0%
0%
0%