Thi Online [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề)
Đề số 27
-
2123 lượt thi
-
50 câu hỏi
-
90 phút
Câu 1:
Xét các số thực dương \(a\) và \(b\) thỏa mãn \({\log _5}\left( {{5^a}{{.25}^b}} \right) = {5^{{{\log }_5}a + {{\log }_5}b + 1}}.\) Mệnh đề nào dưới đây đúng?
Đáp án B.
Ta có \({\log _5}\left( {{5^a}{{25}^b}} \right) = {5^{{{\log }_5}a + {{\log }_5}b + 1}}\)
\( \Leftrightarrow {\log _5}{5^a} + {\log _5}{25^b} = {5^{{{\log }_5}a}}{.5^{{{\log }_5}b}}.5\)
\( \Leftrightarrow a + b{\log _5}25 = a.b.5\)
\( \Leftrightarrow a + 2b = 5ab\)
Câu 2:
Cho hình nón có góc ở đỉnh bằng \({60^0},\) bán kính đáy bằng \(a.\) Diện tích xung quanh của hình nón bằng
Đáp án C.

Ta có: \(SB = \frac{{OB}}{{\sin \widehat {BSO}}} = \frac{a}{{\frac{1}{2}}} = 2a\)
\({S_{xq}} = \pi Rl = \pi .a.2a = 2{a^2}\pi .\)
Câu 3:
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Đáp án A.
Từ đồ thị của hàm số ta suy ra:
Tiệm cận đứng \(x = - \frac{d}{c} < 0 \Rightarrow cd >0\left( 1 \right)\)</>
Tiệm cận ngang \(y = \frac{a}{c} >0 \Rightarrow ac >0\left( 2 \right)\)
Từ \(\left( 1 \right),\left( 2 \right)\) suy ra \(ad >0.\)
Giao điểm với trục hoành \(x = - \frac{b}{a} >0 \Rightarrow ab < 0.\)
Vậy ta có \(ab < 0\) và \(ad >0.\)
Câu 4:
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Đáp án A.

Vẽ đường cao
\(SO\) của tam giác đều \(SAB.\)
Ta có \(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SO \bot \left( {ABCD} \right).\)
Do đó \(SO\) là đường cao của hình nón \(S.ABCD\) và \(SO = \frac{{6a\sqrt 3 }}{2} = 3a\sqrt 3 .\)
Thể tích của khối chóp \(S.ABCD:V = \frac{1}{3}{S_{ABCD}}.SO = \frac{1}{3}.{\left( {6a} \right)^2}.3a\sqrt 3 = 36\sqrt 3 {a^3}.\)
Câu 5:
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Đáp án B.
Ta có tam giác \(SAB\) là tam giác đều cạnh \(2a\) nên \(SA = SB = AB = 2a\)
Khi đó: \(R = OA = a,l = SA = 2a.\) Nên \(h = SO = a\sqrt 3 .\)
Vậy chọn đáp án B.
Bài thi liên quan
Đánh giá trung bình
0%
0%
0%
0%
0%