Đề số 21

  • 2267 lượt thi

  • 50 câu hỏi

  • 90 phút

Câu 1:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án

Ta có \(y' = 0 \Leftrightarrow {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 2\\x = 5\end{array} \right..\)

Bảng biến thiên của hàm số như sau

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị c (ảnh 1)

Vậy hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

Đáp án B


Câu 2:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:\(x\)\( - \infty \)                     \( - 1\)                         1                       \[ + \infty \]\(f'\left( x \ri (ảnh 1)

Hàm số nghịch biến trên khoảng nào dưới đây?

Xem đáp án

Từ bảng biến thiên ta có hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right).\)

Đáp án B


Câu 3:

Hàm số nào sau đây nghịch biến trên từng khoảng xác định của nó?

Xem đáp án

Xét hàm số \(y = \frac{{2x + 1}}{{x - 3}}.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ 3 \right\}.\)

Ta có \(y' = \frac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}} < 0,\forall x \in D.\)

Vậy hàm số trên nghịch biến trên từng khoảng xác định của nó.

Đáp án C


Câu 4:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x - 1} \right)^2}\left( {x + 2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

Xem đáp án

Ta có \(f'\left( x \right) = 0 \Leftrightarrow {x^3}{\left( {x - 1} \right)^2}\left( {x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\end{array} \right..\)

Bảng biến thiên

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x - 1} \right)^2}\left( {x + 2} \right).\) Hỏi hàm số \(y = f\left( x \right (ảnh 1)

Vậy hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

Đáp án B


Câu 5:

Tổng diện tích các mặt của một hình lập phương bằng 96. Tính thể tích của khối lập phương đó là?

Xem đáp án

Gọi \(a\) là cạnh hình lập phương, ta có:

\({S_{tp}} = 6{a^2} = 96 \Leftrightarrow {a^2} = 16 \Leftrightarrow a = 4\)

Vậy thể tích của khối lập phương là \(V = {a^3} = {4^3} = 64\)

Đáp án B


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Bài thi liên quan

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận