Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
3189 lượt thi 15 câu hỏi 30 phút
9426 lượt thi
Thi ngay
6259 lượt thi
4633 lượt thi
4056 lượt thi
4747 lượt thi
2416 lượt thi
5288 lượt thi
3693 lượt thi
3320 lượt thi
Câu 1:
Cho hàm số f (x) có fπ2=2 và f’(x)=xsinx. Giả sử rằng ∫0π2cosx.fxdx=ab-π2c ( với a, b, c là các số nguyên dương, ab tối giản). Khi đó a+b+c bằng:
A. 23
B. 5
C. 20
D. 27
Câu 2:
Nếu ∫0πf(x)sinxdx=20, ∫0πxf'(x)sinxdx=5 thì ∫0π2fxcosxdx bằng:
A. -30
B. -50
C. 15
D. 25
Câu 3:
Cho hàm số f (x) là hàm số chẵn và liên tục trên [-1;1] thỏa mãn: ∫-11fxdx=8615 và f(1)=5. Khi đó ∫01xf'xdx bằng:
A. 3215
B. 8615
C. -1115
D. 1615
Câu 4:
Cho I=∫0m2x-1e2xdx. Tập hợp tất cả các giá trị của tham số m để I < m là khoảng (a;b). Tính P=a-3b
A. -3
B. -2
C. -4
D. -1
Câu 5:
Giả sử tích phân I=∫04xln2x+12017dx=a+bcln3. Với phân số bc tối giản. Lúc đó:
A. b+c = 127075
B. b+c = 127073
C. b+c = 127072
D. b+c = 127071
Câu 6:
Biết ∫2e+1lnx-1x-12dx=a+be-1 với a, b ∈Z. Chọn khẳng định đúng trong các khẳng định sau:
A. a+b = 1
B. a+b = -1
C. a+b = -3
D. a+b = 3
Câu 7:
Có bao nhiêu số nguyên dương n sao cho nln-∫1nlnxdx có giá trị không vượt quá 2017
A. 2017
B. 2018
C. 4034
D. 4036
Câu 8:
Biết rằng ∫01xcos2xdx=14(asin2+bcos2+c) với a,b,c∈Z. Mệnh đề nào sau đây là đúng
A. a+b+c = 1
B. a-b+c = 0
C. a+2b+c = 0
D. 2a+b+c = -1
Câu 9:
Với mỗi số k, đặt Ik=∫-kkk-x2dx. Khi đó I1+I2+I3+...+I12 bằng:
A. 78π
B. 650π
C. 325π
D. 39π
Câu 10:
Cho hàm số f (x) liên tục trên -12;2 thỏa mãn f0=2 và ∫01f'x2dx=12-16ln2, ∫01fxx+12dx=4ln2-2. Tính ∫01fxdx
A. 5+8ln2
B. 3-8ln2
C. 5-8ln2
D. 7-8ln2
Câu 11:
Cho tích phân I=∫0π2esin2xsinxcos3xdx. Nếu đổi biến số t=sin2x thì:
A. I=12∫01et1-tdt
B. I=2∫01etdt+∫01tetdt
C. I=2∫01et1-tdt
D. I=12∫01et1-t2dt
Câu 12:
Biết ∫012x2+3x+3x2+2x+1=a-lnb với a, b là các số nguyên dương. Tính P=a2+b2
A. P = 13
B. P = 5
C. P = 4
D. P = 10
Câu 13:
Tích phân ∫-15|x2-2x-3|dx có giá trị bằng:
A. 0
B. 643
C. 7
D. 12,5
Câu 14:
Tích phân ∫-11xx2-5|x|+6dx bằng
A. 2
B. 1
C. 0
Câu 15:
Giá trị của tích phân I=∫0π2sin4x+cos4xsin6x+cos6xdx là:
A. I=32128π
B. I=33128π
C. I=31128π
D. I=30128π
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com