18 câu Trắc nghiệm Ôn tập chương có đáp án (Vận dụng)

35 người thi tuần này 5.0 3.5 K lượt thi 18 câu hỏi 40 phút

Chia sẻ đề thi

hoặc tải đề

In đề / Tải về
Thi thử

Cho tứ diện ABCD và G là trọng tâm tam giác ACD. Mặt phẳng (P) qua BG và song song với CD chia khối tứ diện thành hai phần. Tính tỉ số thể tích (số bé chia số lớn) của hai phần đó là:

A. 18

B. 49

C. 23

D. 45 

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1:

Cho tứ diện ABCD và G là trọng tâm tam giác ACD. Mặt phẳng (P) qua BG và song song với CD chia khối tứ diện thành hai phần. Tính tỉ số thể tích (số bé chia số lớn) của hai phần đó là:

Xem đáp án

Câu 2:

Cho hình chóp S.ABC có AB = 5cm, BC = 6cm, CA = 7cm. Hình chiếu vuông góc của S xuống mặt phẳng (ABC) nằm bên trong tam giác ABC. Các mặt phẳng (SAB), (SBC), (SCA) đều tạo với đáy một góc 60°. Gọi AD, BE, CF là các đường phân giác của tam giác ABC với D ∈ BC, E ∈ AC, F ∈ AB .Thể tích S.DEF gần nhất với số nào sau đây?

Xem đáp án

Câu 3:

Khối chóp S.ABCD có đáy là hình thoi cạnh a, SA=SB=SC=a. Cạnh SD thay đổi. Thể tích khối chóp S.ABCD lớn nhất khi độ dài cạnh SD là:

Xem đáp án

Câu 4:

Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến đường thẳng BB’ bằng 5, khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 1 và 2, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm M của B’C’  và A'M=5. Thể tích của khối lăng trụ đã cho bằng:

Xem đáp án

Câu 5:

Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N là hai điểm thay đổi lần lượt thuộc cạnh BC, BD sao cho mặt phẳng (AMN) luôn vuông góc với mặt phẳng (BCD). Gọi V1,V2 lần lượt là giá trị lớn nhất và nhỏ nhất của thể tích khối tứ diện ABMN. Tính V1+V2

Xem đáp án

Câu 6:

Cho lăng trụ tam giác đều ABC.A’B’C’. Trên A’B’ kéo dài lấy điểm M sao cho B'M=12A'B'. Gọi N, P lần lượt là trung điểm của A’C’ và B’B. Mặt phẳng (MNP) chia khối lăng trụ ABC.A’B’C’ thành hai khối đa diện trong đó khối đa diện chứ đỉnh A’ có thể tích V1 và khối đa diện chứ đỉnh C’ có thể tích V2. Tính V1V2

Xem đáp án

Câu 7:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông, AB=BC=a. Biết rằng góc giữa hai mặt phẳng (ACC’) và (AB’C’) bằng 60° (tham khảo hình vẽ bên). Thể tích của khối chóp B'.ACC'A' bằng:

Xem đáp án

Câu 8:

Cho hình chóp SABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SAB là tam giác đều cạnh a3,BC=a3, đường thẳng SC tạo với mặt phẳng (ABC) góc 60°. Thể tích của khối chóp SABC bằng:

Xem đáp án

Câu 9:

Cho hình chóp đều S.ABCD có đáy là hình vuông cạnh a, M là trung điểm của SA. Biết mặt phẳng (MCD) vuông góc với mặt phẳng (SAB). Thể tích khối chóp S.ABCD là:

Xem đáp án

Câu 11:

Xét khối tứ diện ABCD có cạnh AD, BC thỏa mãn AB2+CD2=18 và các cạnh còn lại đều bằng 5. Biết thể tích của khối tứ diện ABCD đạt giá trị lớn nhất có dạng Vmax=xy4;x,yN*;(x;y)=1. Khi đó, x, y thỏa mãn bất đẳng thức nào dưới đây?

Xem đáp án

Câu 13:

Cho hình chóp tứ giác đều S.ABCD, đường cao SO. Biết rằng trong các thiết diện của hình chóp cắt bởi các mặt phẳng chứa SO, thiết diện có diện tích lớn nhất là tam giác đều cạnh bằng a, tính thể tích khối chóp đã cho.

Xem đáp án

Câu 14:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = a và vuông góc với đáy. Mặt phẳng qua A vuông góc với SC cắt hình chóp theo một thiết diện. Tính diện tích thiết diện đó.

Xem đáp án

Câu 15:

Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) nằm trong tứ giác ABCD, các cạnh xuất phát từ đỉnh A của hình hộp tạo với nhau một góc 60°. Tính thể tích khối hộp  ABCD.A'B'C'D'

Xem đáp án

Câu 16:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA=SB=SC=a. Thể tích lớn nhất của khối chóp S.ABCD là:

Xem đáp án

Câu 17:

Cho hình chóp S.ABC có AB=3, BC=4, AC=5. Tính thể tích khối chóp S.ABC biết rằng các mặt bên tạo với đáy một góc 30° và hình chiếu vuông góc của S trên (ABC) nằm trong tam giác ABC.

Xem đáp án

Câu 18:

Cho hình hộp ABCD.A’B’C’D’. Gọi E, F lần lượt là trung điểm của B’C’ và C’D’. Mặt phẳng (AEF) chia hình hộp thành hai hình đa diện (H) và (H’) trong đó (H) là hình đa diện chứa đỉnh A’. Tính tỉ số thể tích đa diện (H) và thể tích hình đa diện (H’).

Xem đáp án

5.0

1 Đánh giá

100%

0%

0%

0%

0%