Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
13850 lượt thi 21 câu hỏi 25 phút
5382 lượt thi
Thi ngay
2999 lượt thi
3690 lượt thi
853 lượt thi
4366 lượt thi
2575 lượt thi
5002 lượt thi
3214 lượt thi
2696 lượt thi
2726 lượt thi
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
A. 2x-y+2z-3=0.
B. 4x-y-z-6=0
C. 2x+y+2z-6=0
D. x+2y+2z-6=0.
Câu 2:
Trong không gian Oxyz, cho hai điểm M (2;2;1), N(-83;43;83) . Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz).
A. x²+ (y+1)²+ (z+1)²=1.
B. x²+ (y-1)²+ (z-1)²=1
C. (x-1)²+ (y-1)²+z²=1
D. (x-1)²+y²+ (z-1)²=1.
Câu 3:
Trong không gian Oxyz, Cho mặt phẳng (R): x+y-2z+2=0 và đường thẳng ∆1:x2=y1=z-1-1.Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1 có phương trình là:
Câu 4:
Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.
A. 72.
B. 108
B. 18.
D. 36.
Câu 5:
Trong không gian Oxyz, cho đường thẳng d:x-11=y-1=z-21và mặt phẳng (P): 2x-y-2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là:
Câu 6:
Có bao nhiêu mặt cầu (S) có tâm thuộc đường thẳng ∆:x-32=y-1-1=z-1-2 đồng thời tiếp xúc với hai mặt phẳng (α1): 2x+2y+z-6=0 và (α2): x-2y+2z=0
A. 1
B. 0.
C. Vô số
D. 2.
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;0;1), B (0;1;-1). Hai điểm D, E thay đổi trên các đoạn OA, OB sao cho đường thẳng DE chia tam giác OAB thành hai phần có diện tích bằng nhau. Khi DE ngắn nhất thì trung điểm của đoạn DE có tọa độ là:
Câu 8:
Trong hệ tọa độ Oxyz cho A (3;3;0), B (3;0;3), C (0;3;3). Mặt phẳng (P) đi qua O, vuông góc với mặt phẳng (ABC) sao cho mặt phẳng (P) cắt các cạnh AB, AC tại các điểm M, N thỏa mãn thể tích tứ diện OAMN nhỏ nhất. Mặt phẳng (P) có phương trình:
A. x+y-2z=0.
B. x+y+2z=0.
C. x-z=0.
D. y-z=0
Câu 9:
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:
A. (P):x+2y+3z+6=0.
B. (P):x+2y+z-2=0.
C. (P):x-2y+z-6=0.
D. (P):3x+2y+2z-4=0.
Câu 10:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A (2;0;0), B (0;3;0), C (0;0;6), D (1;1;1). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm O, A, B, C, D?
A. 6
B. 10
C. 7
D. 5.
Câu 11:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng 3. Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.
Câu 12:
Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2y-z+3=0 và điểm A (2;0;0). Mặt phẳng (α) đi qua A, vuông góc với (P), cách gốc tọa độ O một khoảng bằng 4/3 và cắt các tia Oy, Oz lần lượt tại các điểm B, C khác O. Thể tích khối tứ diện OABC bằng:
A. 8.
B. 16
C. 8/3
D. 16/3
Câu 13:
Trong không gian Oxyz, cho đường thẳng d:x+12=y-11=z-23và mặt phẳng (P):x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
Câu 14:
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng (P): x+y-z-3=0. Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 172 . Tính bán kính R của mặt cầu (S).
A. R=3.
B. R=9
C. R=1
D. R=5.
Câu 15:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a2và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu tan α = 2 thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
A. 300
B. 600
C. 450
D. 900
Câu 16:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (P): 2x-y+2z+1=0. Đường thẳng d:x+24=y-1-4=z+23 Tính T = m² - n².
A. T = -5.
B. T = 4.
C. T = 3
D. T = -4.
Câu 17:
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng:
A. 3.
B. 2.
C. 4.
D. 1.
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân giác trong góc A là: x1=y-6-4=z-6-3 . Biết rằng điểm M (0;5;3) thuộc đường thẳng AB và điểm N (1;1;0) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC.
Câu 19:
Trong không gian Oxyz, phương trình mặt phẳng (P) song song và cách đều hai đường thẳng d1:x-2-1=y1=z1, d2:x2=y-1-1=z-2-1 là?
A. (P):2y-2z+1=0.
B. (P):2x-2z+1=0.
C. (P):2x-2y+1=0.
D. (P):2y-2z-1=0.
Câu 20:
Trong không gian với hệ tọa độ Oxyz, cho điểm A (3;1;0), B (-9;4;9) và mặt phẳng (P) có phương trình 2x-y+z+1=0. Gọi I (a;b;c) là điểm thuộc mặt phẳng (P) sao cho |IA - IB| đạt giá trị lớn nhất. Khi đó tổng a+b+c bằng:
A. -4
B. 22
C. 13.
D. -13.
Câu 21:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+y²+ (z+2)²=4 và đường thẳng d:x=2-yy=tz=m-1+t . Gọi T là tập tất cả các giá trị của m để d cắt (S) tại hai điểm phân biệt A, B sao cho các tiếp diện của (S) tại A và B tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp T.
A. 3
B. -3
C. -5.
D. -4.
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com