Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 4)
151 người thi tuần này 4.6 1.2 K lượt thi 150 câu hỏi 150 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
PHẦN 1: TƯ DUY ĐỊNH LƯỢNG
Lĩnh vực: Toán học (50 câu – 75 phút)
Câu 1. Dựa vào dữ liệu trong hình vē dưới đây:
CHỈ SỐ SẢN XUẤT CÔNG NGHIỆP 8 THÁNG NĂM 2019
SO VỚI CÙNG KỲ NĂM TRƯỚC (%)
Hãy cho biết ngành công nghiệp nào có tốc độ tăng trưởng nhanh nhất trong 8 tháng đầu năm 2019?
Lời giải
Ta có bảng thống kê tốc độ tăng trưởng của các ngành:
Ngành |
Tốc độ tăng trưởng |
Khai khoáng |
\(2,5\% \) |
Chế biến, chế tạo |
\(10,6\% \) |
Sản xuất và phân phối điện |
\(10,2\% \) |
Cung cấp nước, hoạt động quản lý và xử lý rác thải, nước thải |
\(7,4\% \) |
Dựa vào bảng số liệu trên ta có thể thấy tốc độ tăng trưởng cao nhất là ngành chế biến, chế tạo.
Chọn B
Câu 2
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Lời giải
Vì \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) là trọng tâm của tam giác \[ABC\] suy ra: \(\left\{ {\begin{array}{*{20}{c}}{1 = \frac{{1 + 2 + a}}{3}}\\{c = \frac{{ - 3 - 4 - 2}}{3}}\\{3 = \frac{{3 + 5 + b}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 1}\\{c = - 3}\end{array}} \right.} \right.\)
Vậy \(a + b + c = - 2\). Chọn D.
Lời giải
Ta có: \(f\left( x \right) = \frac{{{{\log }_2}x}}{x}\)
\( \Rightarrow f'\left( x \right) = \frac{{ - 1}}{{{x^2}}} \cdot {\log _2}x + \frac{1}{{x \cdot \ln 2}} \cdot \frac{1}{x} = \frac{{1 - {{\log }_2}x \cdot \ln 2}}{{{x^2} \cdot \ln 2}} = \frac{{1 - \ln x}}{{{x^2} \cdot \ln 2}}\). Chọn B.
Câu 4
Cho tam giác đều \[ABC\] có cạnh bằng \[4a.\] Tích vô hướng của hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) là
Lời giải
Câu 5
Tổng phần thực và phần ảo của số phức \(z\) thỏa mãn \(iz + \left( {1 - i} \right)\bar z = - 2i\) bằng
Lời giải
Giả sử số phức \(z\) có dạng: \(z = x + yi\,\,\left( {x\,,\,\,y \in \mathbb{R}} \right)\)
Ta có: \(iz + (1 - i)\bar z = - 2i \Leftrightarrow i\left( {x + yi} \right) + \left( {1 - i} \right)\left( {x - yi} \right) = - 2i \Leftrightarrow x - 2y - yi = - 2i.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 2y = 0}\\{ - y = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 2}\end{array} \Rightarrow x + y = 6} \right.} \right..\)
Tổng phần thực và phần ảo của số phức \(z\) bằng 6. Chọn A.
Câu 6
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \[a,\,\,b,\,\,c,\,\,d\] là số thực) có đồ thị như hình dưới đây. Tính giá trị biểu thức \(T = \frac{{a - 2b + 3d}}{c}.\)

Lời giải
Từ đồ thị ta có:
• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} = - 1 \Rightarrow d = - c\);
• TCN: \(y = - 1 \Rightarrow \frac{a}{c} = - 1 \Rightarrow a = - c\).
Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)
Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} = - 8\). Chọn C.
Câu 7
Cho hình trụ có bán kính đáy bằng \(5\;\,{\rm{cm}}\) và khoảng cách giữa hai đáy là \(7\,\;{\rm{cm}}.\) Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục \(3\;\,{\rm{cm}}.\) Tính diện tích \(S\) của thiết diện được tạo thành.
Lời giải
Gọi thiết diện là hình chữ nhật \[ABCD\], tâm 2 đáy lần lượt là \(O\) và \(O',\,\,CD\) thuộc đáy chứa tâm \(O,\,\,{\rm{H}}\) là trung điểm \[CD.\]
Ta có: \(\left\{ \begin{array}{l}OH \bot CD\\OH \bot BC\end{array} \right.\)\( \Rightarrow OH \bot \left( {ABCD} \right) \Rightarrow d\left( {OO';\left( {ABCD} \right)} \right) = OH = 3\,\,\;{\rm{cm}}.\)
\( \Rightarrow HC = HD = \sqrt {O{C^2} - O{H^2}} = \sqrt {{5^2} - {3^2}} = 4\,\;({\rm{cm)}}.\)
\( \Rightarrow AB = CD = 8\,\;{\rm{cm}}.\)
\( \Rightarrow {S_{ABCD}} = AB \cdot BC = 8 \cdot 7 = 56\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Chọn B.
Câu 8
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Lời giải
Giao điểm của đồ thị hàm số đã cho với trục tung là \(B\left( {0\,;\,\,2{m^2} + 4} \right)\).
Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:
\({x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4 = 0 \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 2x + {m^2} + 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{{{\left( {x - 1} \right)}^2} + {m^2} + 1 = 0\quad (VN)}\end{array}} \right.\)
Giao điểm của đồ thị đã cho với trục hoành là \(A\left( { - 2\,;\,\,0} \right).\)
Diện tích tam giác ABC là: \(S = \frac{1}{2} \cdot OA \cdot OB = \frac{1}{2} \cdot 2 \cdot \left( {2{m^2} + 4} \right) = 8 \Rightarrow m = \pm \sqrt 2 \).
Chọn D.
Câu 9
Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và \[\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2.\] Tính \(I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x.\)
Lời giải
Đặt \(u = \tan x \Rightarrow du = \frac{1}{{{{\cos }^2}x}}dx = \left( {1 + {{\tan }^2}x} \right)dx \Rightarrow \frac{{du}}{{{u^2} + 1}} = dx.\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 0\\x = \frac{\pi }{4} \Rightarrow u = 1\end{array} \right.\).
Ta có: \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{f\left( u \right)}}{{{u^2} + 1}}} \,{\rm{d}}u = \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x \Rightarrow \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2\).
Do đó \[I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x = \int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}\,} dx + \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,\,dx = 2 + 2 = 4\].
Chọn C.
Câu 10
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với đáy và \(SA = a\sqrt 3 .\) Gọi \(\alpha \) là góc giữa \[SD\] và \(\left( {SAC} \right).\) Giá trị \(\sin \alpha \) bằng
Lời giải
Gọi \(O = AC \cap BD.\) Ta có: \(\left\{ {\begin{array}{*{20}{c}}{DO \bot AC}\\{DO \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)}\end{array} \Rightarrow DO \bot \left( {SAC} \right)} \right..\)
\( \Rightarrow {\rm{SO}}\) là hình chiếu của \[SD\] lên mặt phẳng \(\left( {SAC} \right)\)\[ \Rightarrow \widehat {\left( {SD;\,\,\left( {SAC} \right)} \right)} = \widehat {\left( {S\,;\,SO} \right)} = \widehat {DSO} = \alpha .\]
• Xét \(\Delta SAD\) vuông tại \({\rm{A}}\) ta có: \(SD = \sqrt {3{a^2} + {a^2}} = 2a\)
• Xét \(\Delta SOD\) vuông tại O, có \(SD = 2a,\,\,OD = \frac{{a\sqrt 2 }}{2}.\)
\( \Rightarrow \sin \alpha = \sin \widehat {DSO} = \frac{{DO}}{{SD}} = \frac{{\sqrt 2 }}{4}.\) Chọn A.
Câu 11
Tổng bình phương tất cả các nghiệm nguyên của bất phương trình \(\frac{{\left( {{x^2} - 1} \right)\left( {2{x^2} + 3x - 5} \right)}}{{4 - {x^2}}} \ge 0\) là
Tổng bình phương tất cả các nghiệm nguyên của bất phương trình \(\frac{{\left( {{x^2} - 1} \right)\left( {2{x^2} + 3x - 5} \right)}}{{4 - {x^2}}} \ge 0\) là
Lời giải
Ta có \({x^2} - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 1}\end{array}\,\,;\,\,} \right.\)
\(2{x^2} + 3x - 5 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{5}{2}}\end{array}\,\,;\,\,} \right.\)\(4 - {x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = - 2}\end{array}} \right.\).
Trục xét dấu:
Tập nghiệm của bất phương trình là \(S = \left[ { - \frac{5}{2}\,;\,\, - 2} \right) \cup \left[ { - 1\,;\,\,2} \right)\).
Tổng bình phương các nghiệm nguyên bất phương trình là: \({\left( { - 1} \right)^2} + {\left( 0 \right)^2} + {\left( 1 \right)^2} = 2\). Chọn B.
Câu 12
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {1\,;\,\,2\,;\,\, - 2} \right)\) và \(B\left( {\frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right).\) Biết \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của đường tròn nội tiếp tam giác \[OAB.\] Giá trị \(a - b + c\) bằng
Trong không gian \[Oxyz,\] cho hai điểm \(A\left( {1\,;\,\,2\,;\,\, - 2} \right)\) và \(B\left( {\frac{8}{3}\,;\,\,\frac{4}{3}\,;\,\,\frac{8}{3}} \right).\) Biết \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của đường tròn nội tiếp tam giác \[OAB.\] Giá trị \(a - b + c\) bằng
Lời giải
Ta tính được \(OA = 3\,;\,\,OB = 4\,;\,\,AB = 5.\)
Vì \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm của đường tròn nội tiếp tam giác \[OAB\] nên ta có:
\(OA \cdot \overrightarrow {IB} + OB \cdot \overrightarrow {IA} + AB \cdot \overrightarrow {IO} = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3\left( {\frac{8}{3} - a} \right) + 4\left( {1 - a} \right) + 5\left( { - a} \right) = 0}\\{3\left( {\frac{4}{3} - b} \right) + 4\left( {2 - b} \right) + 5\left( { - b} \right) = 0}\\{3\left( {\frac{8}{3} - c} \right) + 4\left( { - 2 - c} \right) + 5\left( { - c} \right) = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 1}\\{b = 1}\\{c = 0}\end{array}} \right.\).
Vậy \(I\left( {1\,;\,\,1\,;\,\,0} \right)\), suy ra \(a - b + c = 0.\) Chọn D.
Câu 13
Hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x^2} - 2{y^2} = 2x + y}\\{{y^2} - 2{x^2} = 2y + x}\end{array}} \right.\) có bao nhiêu nghiệm?
Lời giải
Trừ từng vế các phương trình của hệ ta được:
\(3{x^2} - 3{y^2} = x - y \Leftrightarrow \left( {x - y} \right)\left( {3x + 3y - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - y = 0}\\{3x + 3y - 1 = 0}\end{array}} \right.\).
Kết hợp với hệ phương trình ta có:
\(\left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{3x + 3y - 1 = 0}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\end{array} \right.\)\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} + 3x = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{y = \frac{{1 - 3x}}{3}}\\{9{x^2} - 3x + 5 = 0\,\,(VN)}\end{array}} \right.}\end{array}} \right.\]\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{x = - 3}\\{y = - 3}\end{array}} \right.}\end{array}} \right.\).
Vậy hệ phương trình đã cho có 2 nghiệm \[\left( {0\,;\,\,0} \right),\,\,\left( { - 3\,;\,\, - 3} \right).\] Chọn B.
Câu 14
Một chất điểm xuất phát từ \[O\], chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật \(v\left( t \right) = \frac{1}{{100}}{t^2} + \frac{{13}}{{30}}t\,\,(\;{\rm{m}}/{\rm{s}})\), trong đó \(t\) (giây) là khoảng thời gian tính từ lúc \[A\] bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm \[B\] cũng xuất phát từ \[O\], chuyển động thẳng cùng hướng với \[A\] nhưng chậm hơn 10 giây so với \[A\] và có gia tốc băng \(a\,\,\left( {\;{\rm{m}}/{{\rm{s}}^2}} \right)\) (\(a\) là hằng số). Sau khi \[B\] xuất phát được 15 giây thì đuổi kịp \[A\]. Vận tốc của \[B\] tại thời điểm đuổi kịp A\[A\]bằng
Lời giải
Ta có \[B\] di chuyển được 15 s thì đuổi kịp \[A\], khi đó \[A\] di chuyển được 25 s.
Quãng đường vật \[A\] đi được là \[\int\limits_0^{25} {\left( {\frac{1}{{100}}{t^2} + \frac{{13}}{{30}}t} \right)} \,\,dt = \frac{{375}}{2}\,\,(m).\]
Do đó vật \[B\] cũng đi được quãng đường \(\frac{{375}}{2}m.\)
Vận tốc của vật \[B\] là \[{v_B}\,\,(t) = at\,\,(\;{\rm{m}}/{\rm{s}})\].
Suy ra Quãng đường vật \[B\] đi được trong 15 s là:\(\int\limits_0^{15} {atdt} = \left. {\frac{{a{t^2}}}{2}} \right|_0^{15} = \frac{{225a}}{2} = \frac{{375}}{2} \Leftrightarrow a = \frac{5}{3}\,\,\left( {\;{\rm{m}}/{{\rm{s}}^2}} \right)\).
\( \Rightarrow \) Vận tốc của \[B\] tại thời điểm đuổi kịp \[A\] là \(v\left( {15} \right) = \frac{5}{3} \cdot 15 = 25\,\,(\;{\rm{m}}/{\rm{s}})\). Chọn D.
Câu 15
Cho \[a,\,\,b,\,\,c\] là các số thực thỏa mãn \({\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} = 8\) và \({2^a} = {3^b} = {6^{ - c}}.\) Khi đó \(a + b + c\) bằng
Cho \[a,\,\,b,\,\,c\] là các số thực thỏa mãn \({\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} = 8\) và \({2^a} = {3^b} = {6^{ - c}}.\) Khi đó \(a + b + c\) bằng
Lời giải
Câu 16
Một nghiên cứu cho thấy một nhóm học sinh được cho xem cùng một danh sách các loài động vật và được kiểm tra lại xem họ nhớ bao nhiêu % mỗi tháng. Sau \(t\) tháng, khả năng nhớ trung bình của nhóm học sinh được cho bởi công thức \(M\left( t \right) = 75 - 20\ln \left( {t + 1} \right),\,\,t \ge 0\) (đơn vị: %). Hỏi sau khoảng bao nhiêu lâu thì nhóm học sinh đó nhớ được danh sách đó dưới \(10\% \)?
Lời giải
Theo công thức tính tỉ lệ đã cho thì cần tìm nghiệm \(t\) của bất phương trình:
\(M\left( t \right) = 75 - 20\ln \left( {t + 1} \right) \le 10 \Leftrightarrow \ln \left( {t + 1} \right) \ge 3,25 \Rightarrow t \ge 24,79\).
Vậy sau khoảng 25 tháng thì học sinh nhớ được danh sách đó là dưới \[10\% .\] Chọn A.
Câu 17
Lời giải
Ta có:
\(f'\left( x \right) \cdot \left( {3\left| {f\left( x \right)} \right| - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f'\left( x \right) = 0}\\{3\left| {f\left( x \right)} \right| = m}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pm 1}\\{\left| {f\left( x \right)} \right| = \frac{m}{3}}\end{array}} \right.} \right..\)
Suy ra yêu cầu bài toán \( \Leftrightarrow \left| {f\left( x \right)} \right| = \frac{m}{3}\) có 6 nghiệm phân biệt khác \( \pm 1.\)
\( \Rightarrow \frac{m}{3} \in \left( {0\,;\,\,2} \right) \Rightarrow m \in \left( {0\,;\,\,6} \right)\). Vậy có 5 giá trị nguyên của \(m\) thỏa mãn ycbt.
Chọn A
Câu 18
Trong mặt phẳng Oxy, cho đường tròn \((C):{\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 4.\) Phương trình tiếp tuyến với đường tròn \((C)\) song song với đường thẳng \(\Delta :4x - 3y + 2 = 0\) là
Lời giải
Điểm \(M\left( {{x_0};\,\,{y_0}} \right)\) nằm trên đường thẳng \(\Delta :x - y - 2 = 0 \Rightarrow M\left( {x\,;\,\,x - 2} \right).\)
Khi đó: \[\overrightarrow {AM} \,\left( {x - 1\,;\,\,x - 3} \right);\,\,\overrightarrow {BM} \left( {x - 3\,;\,\,x - 4} \right)\].
Tam giác MAB vuông tại \[M \Leftrightarrow \overrightarrow {AM} \cdot \overrightarrow {BM} = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) + \left( {x - 3} \right)\left( {x - 4} \right) = 0\]
\( \Leftrightarrow \left( {x - 3} \right)\left( {x - 1 - x + 4} \right) = 0 \Rightarrow x = 3 \Rightarrow y = x - 2 = 1 \Rightarrow T = x + 3y = 3 + 3 = 6\).
Chọn D.
Câu 19
Số giờ có ánh sáng mặt trời của một thành phố \(A\) trong ngày thứ \(t\) của năm 2017 được cho bởi một hàm số \(y = 4\sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] + 10\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365.\) Vào ngày nào trong năm thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Lời giải
Vì \(\sin \left[ {\frac{\pi }{{178}}} \right]\left( {t - 60} \right) \le 1 \Rightarrow t = y = 4\sin \left[ {\frac{\pi }{{178}}} \right]\left( {t - 60} \right) + 10 \le 14.{\rm{ }}\)
Ngày có ánh sáng mặt trời nhiều nhất \( \Leftrightarrow y = 14 \Leftrightarrow \sin \left[ {\frac{\pi }{{178}}\left( {t - 60} \right)} \right] = 1\)
\( \Leftrightarrow \frac{\pi }{{178}}\left( {t - 60} \right) = \frac{\pi }{2} + k2\pi \Leftrightarrow t = 149 + 356k\)Do \(0 < t \le 365 \Rightarrow 0 < 149 + 356k \le 365 \Leftrightarrow - \frac{{149}}{{356}} < k \le \frac{{54}}{{89}}\), mà \(k \in \mathbb{Z}\) nên \(k = 0.\)
Với \(k = 0 \Rightarrow t = 149\) rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2017 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện \(0 < t \le 365\) thì ta biết năm nay tháng 2 chỉ có 28 ngày).
Chọn B.
Câu 20
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với đáy \[ABCD\], góc giữa hai mặt phẳng \(\left( {SBD} \right)\) và \[ABCD\] bằng \(60^\circ .\) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[SB,{\rm{ }}SC.\] Tính thể tích khối chóp \[S.ADNM\] là
Lời giải
Gọi \(O = AC \cap BD.\)
Ta có \(AO \bot BD \Rightarrow SO \bot BD\)
Suy ra \(\left( {\widehat {\left( {{\rm{SBD}}} \right),\,\,\left( {{\rm{ABCD}}} \right)}} \right) = \widehat {SOA} = 60^\circ \).
\({V_{S.ADN}} = \frac{1}{2} \cdot {V_{S \cdot ADC}} = \frac{1}{4} \cdot {V_{S.ABCD}}\) và
\({V_{S.AMN}} = \frac{1}{2} \cdot \frac{1}{2}{V_{S.ABC}} = \frac{1}{8}{V_{S.ABCD.}}\)
\( \Rightarrow {V_{S.ADMN}} = {V_{S.ADN}} + {V_{S.AMN}} = \frac{3}{8}{V_{S.ABCD}}.\)\(SA = AO \cdot \tan \widehat {SOA} = \frac{{a\sqrt 2 }}{2}\tan 60^\circ = \frac{{a\sqrt 6 }}{2} \Rightarrow {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}} \cdot S = \frac{{{a^3}\sqrt 6 }}{6}.\)
\( \Rightarrow {V_{S.ADMN}} = \frac{3}{8} \cdot \frac{{{a^3}\sqrt 6 }}{6} = \frac{{{a^3}\sqrt 6 }}{{16}}.\)
Chọn A.
Câu 21
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f'\left( x \right) = \left( {x + 1} \right)\left( {x - 2} \right).\) Hàm số \(g\left( x \right) = f\left( {{x^2} - 2} \right)\) nghịch biến trên khoảng nào dưới đây?
Lời giải
Ta có: \(y' = 3{x^2} - 2mx + 12\)
Yêu cầu bài toán \( \Leftrightarrow y' \ge 0;\forall x \in \left( {1\,;\, + \infty } \right)\)
\( \Leftrightarrow 3{x^2} + 12 \ge 2mx\,;\,\,\forall x \in \left( {1\,;\, + \infty } \right) \Leftrightarrow \frac{{3{x^2} + 12}}{{2x}} \ge m;\,\,\forall x \in \left( {1\,;\, + \infty } \right)\)
Xét hàm \(h\left( x \right) = \frac{{3{x^2} + 12}}{{2x}} = \frac{{3x}}{2} + \frac{6}{x}\) có \(h'\left( x \right) = \frac{3}{2} - \frac{6}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\).
Ta có BBT của \(h\left( x \right)\) trên \(\left( {1\,;\, + \infty } \right)\).
Suy ra yêu cầu bài toán tương đương có 6 giá trị nguyên dương của m thỏa mãn.
Chọn B.
Câu 22
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
Lời giải
Đặt \(t = \sqrt {x + 1} > 1 \Rightarrow {t^2} = x + 1 \Rightarrow x = {t^2} - 1\)
\[ \Rightarrow f'\left( x \right) = \frac{{{t^2} - 1}}{{{t^2} - t}} = \frac{{\left( {t - 1} \right)\left( {t + 1} \right)}}{{\left( {t - 1} \right)t}} = \frac{{t + 1}}{t} = 1 + \frac{1}{t} = \frac{1}{{\sqrt {x + 1} }} + 1\]
\( \Rightarrow f\left( x \right) = \int {f'\left( x \right)} \,\,dx = \int {\left( {1 + \frac{1}{{\sqrt {x + 1} }}} \right)} \,\,{\rm{d}}x = x + \int {\frac{{{\rm{d}}\left( {x + 1} \right)}}{{\sqrt {x + 1} }}} \)\[ = x + 2\int {\frac{{{\rm{d}}\left( {x + 1} \right)}}{{2\sqrt {x + 1} }}} = x + 2\sqrt {x + 1} + C\].
Mà \(f\left( 3 \right) = 3 \Rightarrow 3 + 2 \cdot \sqrt {3 + 1} + C = 3 \Rightarrow C = - 4 \Rightarrow f\left( x \right) = x + 2\sqrt {x + 1} - 4\).
Suy ra \[\int\limits_3^8 {f\left( x \right)} \,{\rm{d}}x = \int\limits_3^8 {\left( {x + 2\sqrt {x + 1} - 4} \right)} \,{\rm{d}}x = \frac{{197}}{6}\]. Chọn B.
Câu 23
Cho lăng trụ đều \(ABC.A'B'C'.\) Biết rằng góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) là \(30^\circ \), tam giác \(A'BC\) có diện tích bằng 8. Thể tích khối lăng trụ \(ABC.A'B'C'\) là
Lời giải
Đặt \(AB = x.\) Gọi \({\rm{M}}\) là trung điểm \({\rm{BC}}.\)
Ta có \(\left\{ {\begin{array}{*{20}{c}}{\left( {A'BC} \right) = \left( {ABC} \right) = BC}\\{AM \bot BC}\\{A'M \bot BC}\end{array}} \right.\)
\( \Leftrightarrow \left( {\left( {A'BC} \right),\,\,\widehat {(ABC)}} \right) = \widehat {A'MA} = 30^\circ .\)Suy ra \(A'A = AM \cdot \tan 30^\circ = \frac{{4 \cdot \sqrt 3 }}{2} \cdot \frac{1}{{\sqrt 3 }} = 2\,;\,\,{S_{ABC}} = \frac{{16\sqrt 3 }}{4} = 4\sqrt 3 .\)
Vậy \({V_{ABC.A'B'C'}} = A'A \cdot {S_{ABC}} = 2 \cdot 4 \cdot \sqrt 3 = 8\sqrt 3 \). Chọn A.
Câu 24
Trong không gian \[Oxyz,\] cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\) và hình nón \[\left( H \right)\] có đỉnh \(A\left( {3\,;\,\,2\,;\,\, - 2} \right)\) và nhận \[AI\] làm trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh của hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,{\rm{ }}N\] sao cho \(AM = 3AN.\) Phương trình mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình nón \[\left( H \right)\] là
Lời giải
Gọi hình chiếu vuông góc của điểm \[I\] lên đoạn thẳng \[MN\] là \[K.\]
Dễ thấy: \(AN = NK = \frac{1}{3}AM\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {1\,;\,\,2\,;\,\,3} \right)\) và bán kính \(R = 5.\)
Có \(AM \cdot AN = A{I^2} - {R^2} = 4 \Rightarrow A{N^2} = \frac{4}{3}\)
\( \Rightarrow KN = AN = \frac{{2\sqrt 3 }}{3} \Rightarrow IK = \sqrt {I{N^2} - K{N^2}} = \frac{{\sqrt {213} }}{3}.\)Nhận thấy mặt cầu đồng tâm với mặt cầu \(\left( S \right)\) và tiếp xúc với các đường sinh của hình tròn \(\left( H \right)\) chính là mặt cầu tâm \(I\left( {1\,;\,\,2\,;\,\,3} \right)\) có bán kính \(IK = \frac{{\sqrt {213} }}{3}.\)
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}.\) Chọn A.
Câu 25
Cho hàm số \[f\left( x \right)\] có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) có đúng 8 điểm cực trị?
Cho hàm số \[f\left( x \right)\] có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) có đúng 8 điểm cực trị?
Lời giải
Đồ thị hàm số \(y = \left| {{x^4} - 2m{x^2} + 25} \right|\) có 7 điểm cực trị khi và chỉ khi \(f\left( x \right) = {x^4} - 2m{x^2} + 25\) có 3 cực trị và giá trị cực tiểu nhỏ hơn 0.
\(f'\left( x \right) = 4{x^3} - 4xm = 4x\left( {{x^2} - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m}\end{array}} \right.\).
Yêu cầu bài toán tương đương \(\left[ {\begin{array}{*{20}{l}}{m > 0}\\{f( \pm m) < 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 0}\\{{m^2} - 2m.m + 25 > 0}\end{array} \Rightarrow m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}} \right.} \right.\).
Do đó \(S = 1 + 2 + 3 + 4 = 10\). Chọn B.
Câu 26
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {{{\log }_2}\left( {{x^2} + 1} \right) - {{\log }_2}\left( {x + 31} \right)} \right]\left( {32 - {2^{x - 1}}} \right) \ge 0\)?
Lời giải
Điều kiện: \(x > 0\).
Ta có \({\log _2}\left( {2x} \right) \cdot \log \left( {\frac{{100}}{x}} \right) > 2\)\( \Leftrightarrow \left( {1 + {{\log }_2}x} \right)\left( {2 - \log x} \right) > 2\)
\( \Leftrightarrow 2 - \log x + 2{\log _2}x - \log x \cdot {\log _2}x > 2\)\( \Leftrightarrow 2{\log _2}x - \log 2 \cdot {\log _2}x - \log x \cdot {\log _2}x > 0\)
\[ \Leftrightarrow {\log _2}x\left( {2 - \log 2 - \log x} \right) > 0 \Leftrightarrow {\log _2}x\left( {\log 50 - \log x} \right) > 0\]
\( \Leftrightarrow \left[ {\left\{ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{{{\log }_2}x > 0}\\{\log 50 - \log x > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{{{\log }_2}x < 0}\\{\log 50 - \log x < 0}\end{array}} \right.}\end{array}} \right.} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{x > 1}\\{x < 50}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{x < 1}\\{x > 50}\end{array}} \right.}\end{array} \Leftrightarrow 1 < x < 50} \right.\).
Vậy có 48 số nguyên thỏa mãn. Chọn B.
Câu 27
Có bao nhiêu số nguyên \(m\) thuộc đoạn \[\left[ { - 20\,;\,\,20} \right]\] để giá trị lớn nhất của hàm số \(y = \frac{{x + m + 6}}{{x - m}}\) trên đoạn \[\left[ {1\,;\,\,3} \right]\] là số dương?
Lời giải
Tập xác định: \(D = \mathbb{R}\backslash \{ m\} \). Để hàm số có giá trị lớn nhất trên \[\left[ {1\,;\,\,3} \right]\] thì \(m \notin \left[ {1\,;\,\,3} \right].\)
Ta có \(y' = \frac{{ - 2m - 6}}{{{{\left( {x - m} \right)}^2}}}\).
• Trường hợp 1: \( - 2m - 6 > 0 \Leftrightarrow m < - 3\).
Khi đó \({\max _{x \in \left[ {1\,;\,\,3} \right]}}y = y\left( 3 \right) = \frac{{m + 9}}{{3 - m}}\).
Để giá trị lớn nhất trên đoạn \[\left[ {1\,;\,\,3} \right]\] là số dương thì \(\frac{{m + 9}}{{3 - m}} > 0 \Leftrightarrow m + 9 > 0 \Leftrightarrow m > - 9\)
Vậy các số nguyên \(m\) thỏa là \( - 8\, & ;\,\, - 7\, & ;\,\, - 6\, & ;\,\, - 5\, & ;\,\, - 4.\)
• Trường hợp 2: \( - 2m - 6 < 0 \Leftrightarrow m > - 3\).
Khi đó \[{\max _{x \in \left[ {1\,;\,\,3} \right]}}y = y(1) = \frac{{m + 7}}{{1 - m}}\].
Để giá trị lớn nhất trên đoạn \[\left[ {1\,;\,\,3} \right]\] là số dương thì \(\frac{{m + 7}}{{1 - m}} > 0 \Leftrightarrow 1 - m > 0 \Leftrightarrow m < 1\)
Vậy các số nguyên thỏa mãn là \( - 2\,;\,\, - 1\,;\,0\).
• Trường hợp 3: \( - 2m - 6 = 0 \Leftrightarrow m = - 3\).
Khi đó \(y = 1\) nên \({\max _{x \in \left[ {1\,;\,\,3} \right]}}y = 1\).
Vậy \(m = - 3\) thỏa mãn.
Kết luận: có 9 số nguyên thỏa mãn yêu cầu bài toán. Chọn A.Câu 28
Trong không gian \[Oxyz,\] gọi \[m,\,\,n\] là hai giá trị thực thỏa mãn giao tuyến của hai mặt phẳng \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) và \(\left( {{Q_m}} \right):x - my + nz + 2 = 0\) vuông góc với mặt phẳng
\((\alpha ):4x - y - 6z + 3 = 0.\) Tính \(m + n.\)
Lời giải
Ta có \(\left( {{P_m}} \right):mx + 2y + nz + 1 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} \left( {m\,;\,2\,;\,n} \right).\)
\(\left( {{Q_m}} \right):x + my + nz + 2 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} \left( {1\,;\, - m\,;\,n} \right)\).
\((\alpha ):4x - y - 6z + 3 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_\alpha }} \left( {4\,;\, - 1\,;\, - 6} \right)\).
Giao tuyến của hai mặt phẳng \(\left( {{P_m}} \right)\) và \(\left( {{Q_m}} \right)\) vuông góc với mặt phẳng \((\alpha )\) nên ta có hệ phương trình: \(\left\{ \begin{array}{l}({P_m}) \bot (\alpha )\\({Q_m}) \bot (\alpha )\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} \bot \overrightarrow {{n_\alpha }} \\\overrightarrow {{n_2}} \bot \overrightarrow {{n_\alpha }} \end{array} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} \cdot \overrightarrow {{n_\alpha }} = 0\\\overrightarrow {{n_2}} \cdot \overrightarrow {{n_\alpha }} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4m - 2 - 6n = 0\\4 + m - 6n = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = 2\\n = 1\end{array} \right.\).
Vậy \(m + n = 3\). Chọn D.
Câu 29
Cho parabol \(\left( {{P_1}} \right):y = - {x^2} + 2x + 3\) cắt trục hoành tại hai điểm \[A,\,\,B\] và đường thẳng \(d:y = a\,\,\left( {0 < a < 4} \right).\) Xét parabol \(\left( {{P_2}} \right)\) đi qua A, B và có đỉnh thuộc đường thẳng \(y = a.\) Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi \(\left( {{P_1}} \right)\) và \[d.\] Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi \(\left( {{P_2}} \right)\) và trục hoành. Biết \({S_1} = {S_2}\), tính \(T = {a^3} - 8{a^2} + 48a.\)
Lời giải
Để việc tính toán trở nên đơn giản, ta tịnh tiến hai parabol sang trái một đơn vị.
Khi đó, phương trình các parabol mới là \(\left( {{P_1}} \right):y = - {x^2} + 4,\,\,\left( {{P_2}} \right):y = - \frac{a}{4}{x^2} + a.\)
Gọi \[A,\,\,B\] là các giao điểm của \(\left( {{P_1}} \right)\) và trục \(Ox \Rightarrow A\left( { - 2\,;\,\,0} \right),B\left( {2\,;\,\,0} \right) \Rightarrow AB = 4.\)
Gọi \[M,\,\,N\] là các giao điểm của \(\left( {{P_1}} \right)\) và đường thẳng \(d \Rightarrow M\left( { - \sqrt {4 - a} \,;\,a} \right),N\left( {\sqrt {4 - a} ;\,\,a} \right).\)
Ta có: \({S_1} = 2\int\limits_\alpha ^4 {\sqrt {4 - y} } dy = - \left. {\frac{4}{3}\left( {{{\left( {4 - y} \right)}^{\frac{3}{2}}}} \right)} \right|_\alpha ^4 = \frac{4}{3}\left( {4 - a} \right)\sqrt {4 - a} \);
\[{S_2} = 2\int\limits_\alpha ^2 {\left( { - \frac{a}{4}{x^2} + a} \right)} \,dx = \left. {2\left( { - \frac{{a{x^3}}}{{12}} + ax} \right)} \right|_0^2 = \frac{{8a}}{3}\].
Theo giả thiết \({S_1} = {S_2} \Rightarrow \frac{4}{3}\left( {4 - a} \right)\sqrt {4 - a} = \frac{{8a}}{3} \Leftrightarrow \left( {4 - {a^3}} \right) = 4{a^2} \Leftrightarrow {a^3} - 8{a^2} + 48a = 64\)
Vậy \(T = 64.\) Chọn B.
Câu 30
Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\), gọi \(d\) là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(m - 2.\) Biết đường thẳng \(d\) cắt tiệm cận đứng của đồ thị hàm số tại điểm \(A\left( {{x_1};{y_1}} \right)\) và cắt tiệm cận ngang của đồ thị hàm số tại điểm \(B\left( {{x_2};\,{y_2}} \right).\) Gọi \(S\) là tập hợp các số \(m\) sao cho \({x_2} + {y_1} = - 5.\) Tính tổng bình phương các phần tử của \(S\)?
Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\), gọi \(d\) là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(m - 2.\) Biết đường thẳng \(d\) cắt tiệm cận đứng của đồ thị hàm số tại điểm \(A\left( {{x_1};{y_1}} \right)\) và cắt tiệm cận ngang của đồ thị hàm số tại điểm \(B\left( {{x_2};\,{y_2}} \right).\) Gọi \(S\) là tập hợp các số \(m\) sao cho \({x_2} + {y_1} = - 5.\) Tính tổng bình phương các phần tử của \(S\)?
Lời giải
Điều kiện \(m \ne 0.\)
Phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là \(x + 2 = 0\) và \(y - 1 = 0.\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(m - 2\) là:
\(\left( d \right):y = \frac{{3x}}{{{m^2}}} + \frac{{{m^2} - 6m + 6}}{{{m^2}}}.\)
Đường thẳng \(d\) cắt tiệm cận đứng của đồ thị hàm số tại điểm \(A\left( { - 2\,;\,\,\frac{{m - 6}}{m}} \right)\) và cắt tiệm cận ngang của đồ thị hàm số tại điểm \(B\left( {2m - 2\,;\,\,1} \right)\).
Theo giả thiết ta có \[2m - 2 + \frac{{m - 6}}{m} = - 5 \Rightarrow m = 1\,;\,\,m = - 3\]
Vậy bằng tổng bình phương các phần tử của \(S\) bằng 10. Chọn A.
Câu 31
Cho tứ diện \[ABCD\] có các cạnh \[AB,\,\,AC,\,\,AD\] vuông góc với nhau từng đôi một và \(AB = 3a,\,\,AC = 6a,\,\,AD = 4a.\) Gọi \[M,\,\,N,\,\,P\] lần lượt là trung điểm của các cạnh \[BC,\,\,CD,\,\,BD.\] Thể tích khối đa diện \[AMNP\] là
Lời giải
Ta có: \(\frac{{{V_{D.APN}}}}{{{V_{D.ABC}}}} = \frac{{DP}}{{DB}} \cdot \frac{{DN}}{{DC}} = \frac{1}{4};\)
\(\frac{{{V_{B.APM}}}}{{{V_{B.ACD}}}} = \frac{{BP}}{{BD}} \cdot \frac{{BM}}{{BC}} = \frac{1}{4};\frac{{{V_{C.AMN}}}}{{{V_{C.ABD}}}} = \frac{{CM}}{{CB}} \cdot \frac{{CN}}{{CD}} = \frac{1}{4}.\)
Mà: \({V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} - {V_{BAPM}} - {V_{CAMN}} = \frac{1}{4}{V_{ABCD}}\)
\( = \frac{1}{4}\left( {\frac{1}{6}AB \cdot AC \cdot AD} \right) = \frac{1}{4}\left( {\frac{1}{6}3a \cdot 6a \cdot 4a} \right) = 3{a^3}\). Chọn B.Câu 32
Trong không gian \[Oxyz,\] cho tam giác ABC với \(A\left( {2\,;\,\,1\,;\,\,3} \right),\,\,B\left( {1\,;\,\, - 1\,;\,\,2} \right),\,\,C\left( {3\,;\,\, - 6\,;\,\,1} \right).\) Điểm \(M\left( {x;\,\,y;\,\,z} \right)\) thuộc mặt phẳng \(\left( {Oyz} \right)\) sao cho \(M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Giá trị biểu thức \(P = x + y + z\) là
Lời giải
Gọi \(I\) là điểm thỏa \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \vec 0 \Leftrightarrow I\left( {2\,;\,\, - 2\,;\,\,2} \right)\)
\(M{A^2} + M{B^2} + M{C^2} = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\)
\( = 3M{I^2} + I{A^2} + I{B^2} + I{C^2} + 2\overrightarrow {MI} \cdot \left( {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right) = 3M{I^2} + I{A^2} + I{B^2} + I{C^2}\).
Mà \(M \in Oxyz \Rightarrow M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất
\( \Leftrightarrow M\) là hình chiếu của \(I\) lên \[\left( {Oyz} \right) \Leftrightarrow M\left( {0\,;\,\, - 2\,;\,\,2} \right).\]
Vậy \(P = 0 - 2 + 2 = 0\). Chọn A.
Câu 33
Cho \(f\left( x \right)\) có đồ thị của hàm số \(y = f'\left( x \right)\) như hình bên. Hàm số \(g\left( x \right) = f\left( {1 - 2x} \right) + {x^2} - x\) nghịch biến trên khoảng nào dưới đây?
Lời giải
Ta có: \[g'\left( x \right) = - 2f'\left( {1 - 2x} \right) + 2x - 1 = - 2\left[ {f'(1 - 2x) - \frac{{\left( {1 - 2x} \right)}}{2}} \right]\].
Từ đồ thị trên suy ra \(g'\left( x \right) \le 0 \Leftrightarrow f'\left( {1 - 2x} \right) - \frac{{\left( {1 - 2x} \right)}}{2} \Leftrightarrow \left( {1 - 2x} \right) \in \left[ { - 2\,;\,\,0} \right] \cup \left[ {4\,;\,\, + \infty } \right)\)
\( \Rightarrow 2x \in \left( { - \infty \,;\,\, - 3} \right] \cup \left[ {1\,;\,\,3} \right] \Rightarrow x \in \left( { - \infty ;\, - \frac{3}{2}} \right] \cup \left[ {\frac{1}{2};\frac{3}{2}} \right]\). Chọn A.
Câu 34
Khối nón \(\left( N \right)\) có bán kính đáy \(r\,\,(\;{\rm{cm}})\), chiều cao \({h_n} = 4{h_1}\,\,(\;{\rm{cm}}).\) Biết rằng thể tích toàn bộ con xoay bằng \(32\,\,{\rm{c}}{{\rm{m}}^3}.\) Thể tích khối nón \(\left( N \right)\) bằng
Lời giải
Theo bài ta có \({h_n} = 4{h_1} \Rightarrow {h_1} = \frac{1}{4}{h_n};{h_2} = 2{h_1} = \frac{1}{2}{h_n}\).
Thể tích toàn bộ con xoay là:
\[V = {V_{\left( {T1} \right)}} + {V_{\left( {T2} \right)}} + {V_{\left( N \right)}} = \pi \cdot r{ \cdot ^2}{h_1} + \pi \cdot {\left( {2r} \right)^2} \cdot {h_2} + \frac{1}{3}\pi \cdot {r^2} \cdot {h_n}\]
\( \Leftrightarrow \pi \cdot {r^2} \cdot \frac{1}{4}{h_n} + \pi \cdot 4{r^2} \cdot \frac{1}{2}{h_n} + \frac{1}{3}\pi \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{3}{4}\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n}} \right) + 6\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n}} \right)\)
\( \Leftrightarrow \frac{1}{3}\pi \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{{31}}{4}\,\,\,\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n} = 4} \right)\).
Vậy thể tích khối nón \(\left( N \right)\) là: \({V_{\left( N \right)}} = 4\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn C.
Câu 35
Có 8 quyển sách Địa lí, 12 quyển sách Lịch sử, 10 quyển sách Giáo dục công dân (các quyển sách cùng một môn thì giống nhau) được chia thành 15 phần quả, mỗi phần gồm 2 quyển khác loại. Lấy ngẫu nhiên 2 phần quà từ 15 phần quà đó. Xác suất để hai phần quà lấy được khác nhau là
Lời giải
Gọi số phần quà Sử - Địa là \[xx\], số phần quà Sử - GDCD là \[yy\] và số phần quà Địa - GDCD là \[zz.\]
Tổng số phần quà là 15 nên \(x + y + z = 15.\)
Phần quà có môn sử có 2 kiểu: Sử - Địa (\(x\) phần quà) và Sử - GDCD (\(y\) phần quà).
Do có 12 quyển sách sử nên 12 quyển này nằm hoàn toàn trong 2 kiểu phần quà trên.
Do đó: \(x + y = 12\).
Tương tự, ta có: Địa: \(z + x = 8;\) GDCD: \(y + z = 10.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x + y + z = 15}\\{x + y = 12}\\{y + z = 10}\\{x + z = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{y = 7}\\{z = 3}\end{array}} \right.} \right.\).
Suy ra số phần quà Sử - Địa là 5; Sử - GDCD là 7; Địa - GDCD là 3.
Chọn 2 trong 15 phần quà \( \Rightarrow \) Không gian mẫu \(n\left( \Omega \right) = C_{15}^2 = 105\).
Gọi A là biến cố: "Hai phần quà lấy được khác nhau", khi đó ta có:
\(n\left( A \right) = C_5^1 \cdot C_7^1 + C_7^1 \cdot C_3^1 + C_3^1 \cdot C_5^1 = 71\).
Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( P \right)}} = \frac{{71}}{{105}}.\] Chọn B.
Câu 36
Cho tập A là tập hợp các số tự nhiên, mà mỗi số tự nhiên trong A đều chia hết cho 3 hoặc chia hết cho 5 , hoặc chia hết cho cả 3 và 5 . Trong đó có 2019 số chia hết cho 3; 2020 số chia hết cho 5,195 số chia hết cho 15. Hỏi tập A có bao nhiêu phần tử?
Lời giải
Theo biểu đồ Ven ta có:
Số phần tử của tập \[A\] là:
\(2019 - 195 + 195 + 2020 - 195 = 3844\) (phần tử).
Đáp án: 3844.Câu 37
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{{\left( {n + 2} \right){u_n} + 2}}{n};\,\,\forall n \in \mathbb{N}*}\end{array}} \right.\). Tính giới hạn lim \(\frac{{{u_n}}}{{{n^2}}}.\)
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{{\left( {n + 2} \right){u_n} + 2}}{n};\,\,\forall n \in \mathbb{N}*}\end{array}} \right.\). Tính giới hạn lim \(\frac{{{u_n}}}{{{n^2}}}.\)
Lời giải
Ta có \({u_{n + 1}} = \frac{{\left( {n + 2} \right){u_n} + 2}}{n} \Leftrightarrow n{u_{n + 1}} = \left( {n + 2} \right){u_n} + 2\,\,\forall n \in \mathbb{N}*\).
Đặt \({u_n} = {v_n} - 1,\,\,\forall n \in \mathbb{N}*\) thì \({v_1} = 1 + 1 = 2\) và \(n{u_{n + 1}} = \left( {n + 2} \right){u_n} + 2\).
Do đó \(n{v_{n + 1}} = \left( {n + 2} \right){v_n} \Leftrightarrow \frac{{{v_{n + 1}}}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{{{v_n}}}{{n\left( {n + 1} \right)}} \Rightarrow \frac{{{v_1}}}{2} = 1\)
\( \Rightarrow {v_n} = n\left( {n + 1} \right) \Rightarrow {u_n} = n\left( {n + 1} \right) - 1 = {n^2} + n - 1\).
Vậy \(\lim \frac{{{u_n}}}{{{n^2}}} = \lim \frac{{{n^2} + n - 1}}{{{n^2}}} = 1\).
Đáp án: 1.
Câu 38
Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là
Cho hình nón \({N_1}\) đỉnh \(S\) đáy là đường tròn \(C\left( {O;\,\,R} \right)\), đường cao \(SO = 40\). Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ \({N_2}\) có đỉnh \(S\) và đáy là đường tròn \(C'\left( {O';\,\,R'} \right).\) Biết tỉ số thể tích \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{1}{8}.\) Độ dài đường cao nón \({N_2}\) là
Lời giải
Ta có: \({V_{{N_1}}} = \frac{1}{3}\pi {R^2} \cdot SO,\,\,{V_{{N_2}}} = \frac{1}{3}\pi {R^2} \cdot SO'\)
Mặt khác, \(\Delta SO'A\) và \(\Delta SOB\) đồng dạng nên \(\frac{{R'}}{R} = \frac{{SO'}}{{SO}}\).
Suy ra: \(\frac{{{V_{{N_2}}}}}{{{V_{{N_1}}}}} = \frac{{{{R'}^2} \cdot SO'}}{{{R^2} \cdot SO}} = {\left( {\frac{{SO'}}{{SO}}} \right)^3} = \frac{1}{8}\).
Do đó \(\frac{{SO'}}{{SO}} = \frac{1}{2} \Rightarrow SO' = \frac{1}{2} \cdot 40 = 20\;\,({\rm{cm)}}.\)
Đáp án: 20.Câu 39
Cho hàm số \(f(x)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - 1} \right)\left( {\ln x - 2} \right)\) với mọi \(x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?
Cho hàm số \(f(x)\) có đạo hàm \(f'\left( x \right) = \left( {{x^2} - 1} \right)\left( {\ln x - 2} \right)\) với mọi \(x \in \mathbb{R}.\) Hàm số đã cho có bao nhiêu điểm cực trị?
Lời giải
Ta có \[f'\left( x \right) = 0 \Leftrightarrow \left( {{x^2} - 1} \right)\left( {\ln x - 2} \right) = 0\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = {e^2}}\end{array}} \right.\] (loại \(x = - 1\) vì vi phạm điều kiện của \(\left. {\ln x} \right)\)
Ta thấy đây là nghiệm đơn và \[f'\left( x \right)\] chỉ đổi dấu qua 2 nghiệm này.
Như vậy hàm số đã cho có 2 điểm cực trị. Đáp án: 2.
Câu 40
Một công ty muốn xây văn phòng là hình hộp chữ nhật \(ABCD.A'B'C'D'\) sao cho chu vi đáy \[ABCD\] là \(18\,\;{\rm{m}}\) và mặt bên \(ABB'A'\) là hình vuông. Thể tích lớn nhất của khối hộp chữ nhật \(ABCD.A'B'C'D'\) bằng
Một công ty muốn xây văn phòng là hình hộp chữ nhật \(ABCD.A'B'C'D'\) sao cho chu vi đáy \[ABCD\] là \(18\,\;{\rm{m}}\) và mặt bên \(ABB'A'\) là hình vuông. Thể tích lớn nhất của khối hộp chữ nhật \(ABCD.A'B'C'D'\) bằng
Lời giải
Độ dài cạnh đáy \[AB\] là \(a\,(m)\), độ dài cạnh còn lại BC là \(9 - a\,\,(m)\), chiều cao \(AA'\) là \(a\,(m).\)
Thể tích của khối hộp chữ nhật là: \(V = a\left( {9 - a} \right) \cdot a = 9{a^2} - {a^3}\,\left( {{m^3}} \right)\).
Ta có: \(V' = 18a - 3{a^2} = 0 \Rightarrow a = 6\).
Ta có bảng biến thiên:
Suy ra \({V_{\max }} = 108\) tại \(a = 6\). Đáp án: 108.
Câu 41
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 8x + m}}\) có 3 đường tiệm cận?
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để đồ thị hàm số \(y = \frac{{x - 1}}{{{x^2} - 8x + m}}\) có 3 đường tiệm cận?
Lời giải
Dễ thấy đồ thị có 1 đường TCN: \(y = 0\).
Yêu cầu bài toán \( \Leftrightarrow {x^2} - 8x + m = 0\) có 2 nghiệm phân biệt khác 1 \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 - 8 + m \ne 0}\\{{4^2} - m > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ne 7}\\{m < 16}\end{array}} \right.} \right.\)
Suy ra có 14 giá trị nguyên của \(m\) thỏa mãn. Đáp án: 14.
Câu 42
Cho phương trình \({\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt {\sqrt 5 - 2} }}\sqrt {{x^2} + mx - 2{m^2}} = 0\). Có bao nhiêu giá trị nguyên của tham số \(m\) đế phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 3?\)
Cho phương trình \({\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt {\sqrt 5 - 2} }}\sqrt {{x^2} + mx - 2{m^2}} = 0\). Có bao nhiêu giá trị nguyên của tham số \(m\) đế phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 3?\)
Lời giải
\({\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt {\sqrt 5 - 2} }}\sqrt {{x^2} + mx - 2{m^2}} = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\sqrt 5 - 2}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) + {\log _{\frac{{5 - 4}}{{\sqrt 5 + 2}}}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {2{x^2} - x - 4{m^2} + 2m} \right) - {\log _{\sqrt 5 + 2}}\left( {{x^2} + mx - 2{m^2}} \right) = 0\)
\( \Leftrightarrow {\log _{2 + \sqrt 5 }}\left( {\frac{{2{x^2} - x - 4{m^2} + 2m}}{{{x^2} + mx - 2{m^2}}}} \right) = 0\)\( \Leftrightarrow \frac{{2{x^2} - x - 4{m^2} + 2m}}{{{x^2} + mx - 2{m^2}}} = 1\)
\( \Leftrightarrow {x^2} - (1 + m)x - 2{m^2} + 2m = 0\)
Yêu cầu bài toán \( \Leftrightarrow \left\{ \begin{array}{l}{(1 + m)^2} + 2{m^2} - 2m > 0\\{x_1}^2 + {x_2}^2 = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}3{m^2} + 1 > 0\\{\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3\end{array} \right.\)
\( \Rightarrow {\left( {1 + m} \right)^2} - 2\left( {2m - 2{m^2}} \right) = 3 \Leftrightarrow {m^2} + 2m + 1 - 4m + 4{m^2} = 3 \Leftrightarrow 5{m^2} - 2m - 2 = 0\)
\( \Leftrightarrow m = \frac{{1 \pm \sqrt {11} }}{5}\).
Suy ra không có giá trị nguyên nào của \(m\) thỏa mãn yêu cầu bài toán. Đáp án: 0.
Câu 43
Cho \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) là số phức thỏa mãn môđun \(z\) nhỏ nhất và \(\left| {z - 1 - 2i} \right| + \left| {z + 2 - 3i} \right| = \sqrt {10} .\) Tính \(S = 7a + b.\)
Cho \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) là số phức thỏa mãn môđun \(z\) nhỏ nhất và \(\left| {z - 1 - 2i} \right| + \left| {z + 2 - 3i} \right| = \sqrt {10} .\) Tính \(S = 7a + b.\)
Lời giải
Gọi \(M\left( {a;\,\,b} \right)\) là điểm biểu diễn số phức \(z = a + bi\)
\(A\left( {1;\,\,2} \right)\) là điểm biểu diễn số phức \(1 + 2i\)
\(B\left( { - 2;\,\,3} \right)\) là điểm biểu diễn số phức \( - 2 + 3i\,;\,\,AB = \sqrt {10} \)
\(\left| {z - 1 - 2i} \right| + \left| {z + 2 - 3i} \right| = \sqrt {10} \) trở thành \(MA + MB = AB\)
\( \Leftrightarrow M\,,\,\,A\,,\,\,B\) thẳng hàng và M ở giữa \[A\] và \({\rm{B}}.\)Gọi \(H\) là điểm chiếu của \(O\) lên \[AB,\] phương trình \[\left( {AB} \right):x + 3y - 7 = 0\,,\,\,\left( {OH} \right):3x - y = 0\].
Tọa độ điểm \(H\left( {\frac{7}{{10}};\,\,\frac{{21}}{{10}}} \right)\) suy ra \(\overrightarrow {AH} = \left( { - \frac{3}{{10}};\,\,\frac{1}{{10}}} \right),\,\,\overrightarrow {BH} \left( {\frac{{27}}{{10}};\,\,\frac{9}{{10}}} \right)\) và \(\overrightarrow {BH} = - 9\overrightarrow {AH} \) nên\(H \in AB.\) Mà \(z\) nhỏ nhất nên \(OM\) nhỏ nhất. Mặt khác, \(M\) thuộc đoạn \[AB\] nên \(M \equiv H\left( {\frac{7}{{10}};\,\,\frac{{21}}{{10}}} \right)\).
Lúc đó \(S = 7a + b = \frac{{49}}{{10}} + \frac{{21}}{{10}} = 7.\) Đáp án: 7.
Câu 44
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thỏa mãn \(\int\limits_{ - 5}^1 {f\left( x \right)} \,{\rm{d}}x = 9.\) Tích phân \[\int\limits_0^2 {\left[ {f\left( {1 - 3x} \right) + 9} \right]} \,dx\] bằng
Lời giải
Ta có \[\int\limits_0^2 {\left[ {f\left( {1 - 3x} \right) + 9} \right]} \,dx = \int\limits_0^2 {f\left( {1 - 3x} \right)} \,dx + \int\limits_0^2 9 \,dx = \int\limits_0^2 {f\left( {1 - 3x} \right)} \,dx + 18\]
Xét \[\int\limits_0^2 {f\left( {1 - 3x} \right)} \,dx\], đặt \(t = 1 - 3x \Rightarrow dt = - 3dx \Rightarrow dx = - \frac{{dt}}{3}.\)
Đổi cận khi \(x = 0 \Rightarrow t = 1\,;\,\,x = 2 \Rightarrow t = - 5.\)
Suy ra \[\int\limits_0^2 {f\left( {1 - 3x} \right)\,} dx = - \frac{1}{3}\int\limits_1^{ - 5} {f\left( t \right)\,} dt = \frac{1}{3}\int\limits_{ - 5}^1 {f\left( t \right)\,} dt\].
Khi đó \[\int\limits_0^2 {\left[ {f\left( {1 - 3x} \right) + 9} \right]} \,dx = \frac{1}{3}\int\limits_{ - 5}^1 {f\left( t \right)\,} dt + 18 = \frac{1}{3}\int\limits_{ - 5}^1 {f\left( x \right)\,} dx + 18 = 21\]. Đáp án: 21.
Câu 45
Một khách sạn có 50 phòng, người ta tính rằng nếu mỗi phòng cho thuê với giá 400 nghìn đồng một ngày thì tất cả các phòng đều hết. Biết răng cứ mỗi lần tăng giá thêm 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi người quản lý phải quyết định giá phòng là bao nhiêu nghìn đồng để thu nhập của khách sạn trong ngày là lớn nhất?
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Câu 46
Trên tập hợp số phức, xét phương trình \({z^2} - \sqrt {m + 1} \,z - \frac{1}{4}\left( {{m^2} - 5m - 6} \right) = 0\) (\(m\) là tham số thực). Có bao nhiêu số nguyên \[m \in \left[ { - 10\,;\,\,10} \right]\] để phương trình trên có hai nghiệm phức \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1} + {z_2}} \right| \le \left| {{z_1} - {z_2}} \right|?\)
Trên tập hợp số phức, xét phương trình \({z^2} - \sqrt {m + 1} \,z - \frac{1}{4}\left( {{m^2} - 5m - 6} \right) = 0\) (\(m\) là tham số thực). Có bao nhiêu số nguyên \[m \in \left[ { - 10\,;\,\,10} \right]\] để phương trình trên có hai nghiệm phức \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1} + {z_2}} \right| \le \left| {{z_1} - {z_2}} \right|?\)
Lời giải
Điều kiện \(m + 1 \ge 0 \Leftrightarrow m \ge - 1 \cdot \Delta = {m^2} - 4m - 5\).
• Trường hợp 1: \(\Delta \ge 0 \Leftrightarrow {m^2} - 4m - 5 \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \ge 5}\\{m \le 1}\end{array}} \right.\) phương trình có 2 nghiệm thực \({z_1},\,\,{z_2}.\)
Theo định lý Viète, ta có: \({z_1}.{z_2} = - \frac{1}{4}\left( {{m^2} - 5m - 6} \right)\)
\(\left| {{z_1} + {z_2}} \right| \le \left| {{z_1} - {z_2}} \right| \Leftrightarrow {\left| {{z_1} + {z_2}} \right|^2} \le {\left| {{z_1} - {z_2}} \right|^2} \Leftrightarrow 4{z_1} \cdot {z_2} \le 0\)
\( - \left( {{m^2} - 5m - 6} \right) \le 0 \Leftrightarrow {m^2} - 5m - 6 \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \ge 6}\\{m \le - 1}\end{array}} \right.\).
Do \(m \in \mathbb{Z}\) và \(m \in \left[ { - 10\,;\,\,10} \right]\) nên số giá trị \(m\) thỏa mãn \(\left( {10 - 6} \right) + 1 + 1 = 6.\)
• Trường hợp 2: \(\Delta < 0 \Leftrightarrow {m^2} - 4m - 5 < 0 \Leftrightarrow - 1 < m < 5\) phương trình có 2 nghiệm phức \({z_1},{z_2}.\)
\(\left| {{z_1} + {z_2}} \right| \le \left| {{z_1} - {z_2}} \right| \Leftrightarrow {\left| {{z_1} + {z_2}} \right|^2} \le {\left| {{z_1} - {z_2}} \right|^2} \Leftrightarrow m + 1 \le \left| {{m^2} - 4m - 5} \right|\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{m^2} - 5m - 6 \ge 0}\\{{m^2} - 3m - 4 \le 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m \ge 6}\\{m \le - 1}\\{ - 1 \le m \le 4}\end{array}} \right.} \right.\).
Do \(m \in \mathbb{Z}\,,\)\(m < 5\) và \(m \in \left[ { - 10\,;\,\,10} \right]\) nên số giá trị \(m\) thỏa mãn là \(m = 0\,;\,\,m = 1\,;\,\,m = 2\,;\,\,m = 3.\)
Vậy có 10 giá trị của \(m\) thoả mãn yêu cầu bài toán. Đáp án: 10.
Câu 47
Trong không gian \[Oxyz,\] cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = t}\\{z = 2 + 2t}\end{array}\quad (t \in \mathbb{R})} \right.\), \(\Delta :\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 4}}{1}\) và mặt phẳng \((P):x + y - z + 2 = 0.\) Gọi \(d',\,\,\Delta '\) lần lượt là hình chiếu của \(d\,,\,\,\Delta \) lên mặt phẳng \(\left( P \right).\) Gọi \[M\left( {a;\,\,b\,;\,\,c} \right)\] là giao điểm của hai đường thẳng \(d'\) và \(\Delta '.\) Giá trị của tổng \(a + bc\) bằng
Trong không gian \[Oxyz,\] cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = - 2}\\{y = t}\\{z = 2 + 2t}\end{array}\quad (t \in \mathbb{R})} \right.\), \(\Delta :\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 4}}{1}\) và mặt phẳng \((P):x + y - z + 2 = 0.\) Gọi \(d',\,\,\Delta '\) lần lượt là hình chiếu của \(d\,,\,\,\Delta \) lên mặt phẳng \(\left( P \right).\) Gọi \[M\left( {a;\,\,b\,;\,\,c} \right)\] là giao điểm của hai đường thẳng \(d'\) và \(\Delta '.\) Giá trị của tổng \(a + bc\) bằng
Lời giải
Gọi \(\left( Q \right),\,\,\left( R \right)\) lần lượt là hai mặt phẳng chứa \(d\,,\,\,\Delta \) và vuông góc với \(\left( P \right)\).
Khi đó, \(M = \left( P \right) \cap \left( Q \right) \cup \left( R \right)\)
Mặt phẳng \(\left( P \right)\) có VTPT \(\vec n = \left( {1\,;\,\,1\,;\,\, - 1} \right)\)
Đường thẳng \(d\) có VTPT \(\overrightarrow {{u_1}} = \left( {0\,;\,\,1\,;\,\,2} \right)\) và đi qua điểm \(M( - 2;0;2)\)
Mặt phẳng \(\left( Q \right)\) có VTPT \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {{u_1}} \,;\,\,\vec n} \right] = \left( { - 3\,;\,\,2\,;\,\, - 1} \right)\)
\( \Rightarrow \left( Q \right):3\left( {x + 2} \right) - 2\left( {y - 0} \right) + z - 2 = 0 \Leftrightarrow 3x - 2y + z + 4 = 0\)
Đường thẳng \(\Delta \) có VTPT \[\overrightarrow {{u_2}} = \left[ {1\,;\, - 1\,;\, - 1} \right]\] và đi qua điểm \(M(3;1;4)\)
Mặt phẳng \((R)\) có VTPT \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {{u_2}} \,;\,\vec n} \right] = \left( {0\,;\,2\,;\,2} \right)\)
\( \Rightarrow (R):0(x - 3) + 1(y - 1) + 1(z - 4) = 0 \Leftrightarrow y + z - 5 = 0\)
Tọa độ điểm \(M\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x + y - z = - 2}\\{3x - 2y + z = - 4}\\{y + z = 5}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = - 1}\\{y = 2}\\{z = 3}\end{array} \Rightarrow M\left( { - 1\,;\,\,2\,;\,\,3} \right) \Rightarrow a + bc = 5} \right.} \right..\)
Đáp án: 5.
Câu 48
Cho tập hợp \(A = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7} \right\}.\) Có bao nhiêu số tự nhiên chăn có 6 chữ số khác nhau được lập thành từ các chữ số của tập \[A\] đồng thời phải có mặt ba chữ số \[0\,;\,\,1\,;\,\,2\] và chúng đứng cạnh nhau?
Lời giải
Giả sử số tự nhiên chẵn có 6 chữ số là \(\overline {abcdef} \).
• TH1: \[0\,;\,\,1\,;\,\,2\] đứng ở vị trí \[a\,;\,\,b\,;\,\,c\] \(a\) có 2 cách \[b\,;\,\,c\] có tổng là \(2! = 2\) (cách) \(f\) có 2 cách \[d\,;\,\,e\] có tổng là \(A_4^2 = 12\) (cách) \( \to \) Tổng có: \(2 \cdot 2 \cdot 2 \cdot 12 = 96\) (số) |
• TH2: \[0\,;\,\,1\,;\,\,2\] đứng ở vị trí \[b\,;\,\,c\,;\,\,d\] \[b\,;\,\,c\,;\,\,d\] có tổng là \(3! = 6\) (cách) \(f\) có 2 cách \(a\,;\,\,e\) có tổng là \(A_4^2 = 12\) (cách) \( \to \) Tổng có: \(6 \cdot 2 \cdot 12 = 144\) (số). |
• TH3: \[0\,;\,\,1\,;\,\,2\] đứng ở vị trí \[c\,;\,\,d\,;\,\,e\] \[c\,;\,\,d\,;\,\,e\] có tổng là \(3! = 6\) (cách) \(f\) có 2 cách \[a\,;\,\,b\] có tổng là \(A_4^2 = 12\) (cách) \( \to \) Tổng có: \(6.2.12 = 144\) (số). |
• TH4: \[0\,;\,\,1\,;\,\,2\] đứng ở vị trí \[d\,;\,\,e\,;\,\,f\] \(f\) có 2 cách \[d\,;\,\,e\] có tổng là \(2! = 2\) (cách) a ; b ; c có tổng là \(A_5^3 = 60\) (cách) \( \to \) Tổng có: \[2 \cdot 2 \cdot 60 = 240\] (cách) |
Câu 49
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh \[a.\] Góc giữa hai mặt phẳng \(\left( {A'B'CD} \right)\) và \(\left( {ACC'A'} \right)\) bằng bao nhiêu độ?
Lời giải
Chọn hệ trục tọa độ \[Oxyz\] sao cho gốc tọa độ \(O \equiv A',\,\,Ox \equiv A'D',\,\,Oy \equiv A'B',\,\,Oz \equiv A'A.\)
Khi đó: \(A'\left( {0\,;\,\,0\,;\,\,0} \right),\,\,D'\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B'\left( {0\,;\,\,a\,;\,\,0} \right),\,\,C'\left( {a\,;\,\,a\,;\,\,0} \right),\)
\(A\left( {0\,;\,\,0\,;\,\,a} \right),\,\,D\left( {a\,;\,\,0\,;\,\,a} \right),\,\,B\left( {0\,;\,\,a\,;\,\,a} \right),\,\,C\left( {a\,;\,\,a\,;\,\,a} \right)\)
\[ \Rightarrow \overrightarrow {A'B'} = \left( {0\,;\,\,a\,;\,\,0} \right),\,\,\overrightarrow {A'D} = (a\,;\,\,0\,;\,\,a),\]\[\,\,\overrightarrow {A'A} = \left( {0\,;\,\,0\,;\,\,a} \right),\,\,\overrightarrow {A'C'} = \left( {a\,;\,\,a\,;\,\,0} \right).\]
\(\left[ {\overrightarrow {A'B'} ,\,\,\overrightarrow {A'D} } \right] = \left( {{a^2}\,;\,\,0\,;\,\, - {a^2}} \right).\)Chọn \[\overrightarrow {{n_2}} = \left( { - 1\,;\,\,1\,;\,\,0} \right)\] là vectơ pháp tuyến của mặt phẳng \(\left( {ACCA} \right)\).
Góc giữa hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {ACCA} \right)\) là:
\(\cos \alpha = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{| - 1|}}{{\sqrt 2 \cdot \sqrt 2 }} = \frac{1}{2} \Rightarrow \alpha = 60^\circ \). Đáp án: 60.
Câu 50
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} ,\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu số nguyên \(m\) thỏa mãn \[f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right)\]?
Lời giải
Ta có: \(x + \sqrt {{x^2} + 2020} > x + \left| x \right| \ge 0 \Rightarrow x + \sqrt {{x^2} + 2020} > 0,\,\,\forall x \in \mathbb{R}.\)
Từ giả thiết: \[{2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} \Leftrightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right).\]
\({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} \Leftrightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right){\rm{. }}\)
Ta có: \(f'\left( x \right) = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 2020} }}}}{{\left( {x + \sqrt {{x^2} + 2020} } \right)\ln 2020}} = \frac{{x + \sqrt {{x^2} + 2020} }}{{\left( {x + \sqrt {{x^2} + 2020} } \right)\ln 2020\sqrt {{x^2} + 2020} }} > 0,\,\,\forall x \in \mathbb{R}\)
Suy ra hàm số \(f(x)\) luôn đồng biến trên \(\mathbb{R}.\)
Mà với \(\left\{ {\begin{array}{*{20}{l}}{m > 0}\\{m \ne 1}\end{array}} \right.\) thì \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right) \Leftrightarrow \log m < {\log _m}2020\).
Kết hợp với \(\left\{ {\begin{array}{*{20}{l}}{m > 0}\\{m \ne 1}\end{array}} \right.\) và \(m \in \mathbb{Z}\) nên \(m \in \left\{ {2\,;\,\,3\,;\,\, \ldots \,;\,\,65} \right\}\).
Vậy có tất cả 64 giá trị nguyên \(m\) thỏa mãn yêu cầu bài toán. Đáp án: 64.
Câu 51
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trước đây rái cá lông mượt có số lượng quần thể khá phong phú ở Việt Nam, nhưng hiện nay do săn bắt và môi trường, nơi sống bị suy thoái nên số lượng của nó giảm sút nghiêm trọng.
Lời giải
Câu 52
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Chị Dậu là điển hình cho người phụ nữ phong kiến xưa với những tố chất tốt đẹp như sự chân thật và khỏe khoắn.
Lời giải
Câu 53
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong quá trình hình thành và phát triển của mỹ thuật Việt Nam, các họa sĩ, nhà điêu khắc đã trân trọng, nâng niu cái đẹp thiên phú của những người phụ nữ và đưa chúng lên một tầm cao hơn, đó là vẻ đẹp của cái nết - cốt lõi của tâm hồn đức hạnh người phụ nữ Việt Nam.
Lời giải
Câu 54
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Phải thừa nhận một điều, người đàn bà khốn khổ ấy đã có một cuộc đời thong dong, lận đận.
Lời giải
Câu 55
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Khoai trong câu chuyện “Cây tre trăm đốt” vốn là một người nhanh trí. Vì thế trong mọi tình huống anh đều xử lí rất thông minh.
Lời giải
Lời giải
Các từ “thỏ thẻ”, “rì rầm”, “lao xao” là các từ tượng thanh còn “thất thểu” là từ tượng hình. Chọn A.
Lời giải
Lời giải
Lời giải
Các tác phẩm A, B, D thuộc thể loại truyện ngắn. C thuộc loại tùy bút. Chọn C.
Lời giải
Câu 61
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Cùng với văn học trung đại góp phần làm nên diện mạo hoàn chỉnh và đa dạng của văn học dân tộc ngay từ buổi đầu, tạo cơ sở vững chắc cho sự phát triển của văn học ở những thời kì sau.
Lời giải
Câu 62
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
“Phải nhiều__________ qua đi, người tình mong đợi mới đến đánh thức người gái đẹp nằm ngủ mơ màng giữa đồng Châu Hoá đầy hoa dại”.
Lời giải
Câu 63
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Văn học là một khuynh hướng cảm hứng thẩm mĩ được khởi nguồn từ sự khẳng định cái tôi ý thức cá nhân, cá thể, giải phóng về tình cảm, cảm xúc và trí tưởng tượng. Nó phản ứng lại cái duy lí, khuôn mẫu của chủ nghĩa cổ điển.
Lời giải
Câu 64
Chọn từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
“Tôi chỉ muốn cưỡi cơn gió mạnh, đạp luồng sóng dữ, chém cá kình ở Biển Đông, ____ lại giang sơn, cởi ách nô lệ, chứ tôi không chịu khom lưng làm tì thiếp cho người”.
Lời giải
Câu 65
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Tác phẩm “Sóng” là cuộc hành trình, khởi đầu là sự ________ cái chật chội, nhỏ hẹp để tìm đến một tình yêu bao la rộng lớn, cuối cùng là khát vọng được sống hết mình trong tình yêu, muốn ______ vĩnh viễn thành tình yêu muôn thủa.
Lời giải
Tác phẩm “Sóng” là cuộc hành trình khởi đầu là sự từ bỏ cái chật chội, nhỏ hẹp để tìm đến một tình yêu bao la rộng lớn, cuối cùng là khát vọng được sống hết mình trong tình yêu, muốn hóa thân vĩnh viễn thành tình yêu muôn thuở. Chọn C.
Câu 66
Đọc đoạn trích sau đây và trả lời câu hỏi:
Đám than đã vạc hẳn lửa. Mị không thổi cũng không đứng lên. Mị nhớ lại đời mình, Mị lại tưởng tượng như có thể một lúc nào, biết đâu A Phủ chẳng đã trốn được rồi, lúc ấy bố con Pá Tra sẽ bảo là Mị đã cởi trói cho nó, Mị liền phải trói thay vào đấy. Mị phải chết trên cái cọc ấy. Nghĩ thế, trong tình cảnh này, làm sao Mị cũng không thấy sợ... Lúc ấy, trong nhà đã tối bưng, Mị rón rén bước lại, A Phủ vẫn nhắm mắt, nhưng Mị tưởng như A Phủ đương biết có người bước lại... Mị rút con dao nhỏ cắt lúa, cắt nút dây mây. A Phủ cứ thở phè từng hơi, không biết mê hay tỉnh. Lần lần, đến lúc gỡ được hết dây trói ở người A Phủ thì Mị cũng hốt hoảng, Mị chỉ thì thào được một tiếng “Đi ngay...” rồi Mị nghẹn lại. (Vợ chồng A Phủ – Tô Hoài)
Theo đoạn trích trên, vì sao Mị lại cởi trói cho A Phủ?
Lời giải
Câu 67
Đọc đoạn trích sau đây và trả lời câu hỏi:
Hôm nay Cao - Bắc - Lạng cười vang
Dọn lán, rời rừng, người xuống làng
Người nói cỏ lay trong rừng rậm
Cuốc đất dọn cỏ mẹ khuyên con.
(Dọn về làng – Nông Quốc Chấn)
Cụm từ “Cao - Bắc - Lạng” trong đoạn trích nhắc đến những địa danh nào?
Lời giải
Câu 68
Đọc đoạn trích sau đây và trả lời câu hỏi:
Hai thôn chung lại một làng,
Cớ sao bên ấy chẳng sang bên này?
Ngày qua ngày lại qua ngày,
Lá xanh nhuộm đã thành cây lá vàng.
Bảo rằng cách trở đò giang,
Không sang là chẳng đường sang đã đành.
Nhưng đây cách một đầu đình,
Có xa xôi mấy mà tình xa xôi...
(Tương tư – Nguyễn Bính)
Giọng điệu chủ đạo của đoạn trích trên là gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Hai thôn chung lại một làng,
Cớ sao bên ấy chẳng sang bên này?
Ngày qua ngày lại qua ngày,
Lá xanh nhuộm đã thành cây lá vàng.
Bảo rằng cách trở đò giang,
Không sang là chẳng đường sang đã đành.
Nhưng đây cách một đầu đình,
Có xa xôi mấy mà tình xa xôi...
(Tương tư – Nguyễn Bính)
Giọng điệu chủ đạo của đoạn trích trên là gì?
Lời giải
Giọng điệu chủ đạo của đoạn trích là giọng trách móc nhẹ nhàng. Chọn A.
Câu 69
Đọc đoạn trích sau và trả lời câu hỏi:
Để Đất Nước này là Đất Nước Nhân dân
Đất Nước của Nhân dân, Đất Nước của ca dao thần thoại
(Đất Nước – Nguyễn Khoa Điềm)
Hai từ “Đất Nước”, “Nhân dân” được tác giả viết hoa với dụng ý gì?
Đọc đoạn trích sau và trả lời câu hỏi:
Để Đất Nước này là Đất Nước Nhân dân
Đất Nước của Nhân dân, Đất Nước của ca dao thần thoại
(Đất Nước – Nguyễn Khoa Điềm)
Hai từ “Đất Nước”, “Nhân dân” được tác giả viết hoa với dụng ý gì?
Lời giải
Câu 70
Đọc đoạn trích sau đây và trả lời câu hỏi:
Muối ba năm muối đang còn mặn
Gừng chín tháng gừng hãy còn cay
Đôi ta nghĩa nặng tình dày
Có xa nhau đi nữa cũng ba vạn sáu ngàn ngày mới xa.
(Ca dao)
Nhân vật trữ tình trong bài ca dao trên đây là ai?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Muối ba năm muối đang còn mặn
Gừng chín tháng gừng hãy còn cay
Đôi ta nghĩa nặng tình dày
Có xa nhau đi nữa cũng ba vạn sáu ngàn ngày mới xa.
(Ca dao)
Nhân vật trữ tình trong bài ca dao trên đây là ai?
Lời giải
. Dựa vào từ “đôi ta” → Nhân vật trữ tình trong bài ca dao là lứa đôi chồng vợ. Chọn B.
Câu 71
Đọc đoạn trích sau đây và trả lời câu hỏi:
Tôi buộc lòng tôi với mọi người
Để tình trang trải với trăm nơi
Để hồn tôi với bao hồn khổ
Gần gũi nhau thêm mạnh khối đời.
(Trích Từ ấy – Tố Hữu)
Biện pháp tu từ được sử dụng trong hình ảnh “trăm nơi”?
Lời giải
Câu 72
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mẹ ở đâu chiều nay
Nhặt lá về đun bếp
Phải mẹ thổi cơm nếp
Mà thơm suốt đường con.
Ôi mùi vị quê hương
Con quên làm sao được
Mẹ già và đất nước
Chia đều nỗi nhớ thương.
(Trích Gặp lá cơm nếp – Thanh Thảo)
Đoạn thơ thể hiện thái độ, tình cảm gì của tác giả đối với mẹ già và đất nước?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mẹ ở đâu chiều nay
Nhặt lá về đun bếp
Phải mẹ thổi cơm nếp
Mà thơm suốt đường con.
Ôi mùi vị quê hương
Con quên làm sao được
Mẹ già và đất nước
Chia đều nỗi nhớ thương.
(Trích Gặp lá cơm nếp – Thanh Thảo)
Đoạn thơ thể hiện thái độ, tình cảm gì của tác giả đối với mẹ già và đất nước?
Lời giải
Câu 73
Đọc đoạn trích sau đây và trả lời câu hỏi:
THU VỊNH
Trời thu xanh ngắt mấy tầng cao,
Cần trúc lơ phơ gió hắt hiu.
Nước biếc trông như tầng khói phủ,
Song thưa để mặc bóng trăng vào.
Mấy chùm trước giậu hoa năm ngoái,
Một tiếng trên không ngỗng nước nào.
Nhân hứng cũng vừa toan cất bút,
Nghĩ ra lại thẹn với ông Đào.
Trong ba bài thơ, bài này mang cái hồn của cảnh vật mùa thu hơn cả, cái thanh, cái trong, cái nhẹ, cái cao. Mang cái thần của cảnh mùa thu. Cái hồn, cái thần của cảnh thu là nằm ở trong bầu trời, ở trên trời thu. Trời thu rất xanh, rất cao tỏa xuống cả cảnh vật. Cây tre Việt Nam ta, những cây còn non, ít lá, thanh mảnh cao vót như cái cần câu in lên trời biếc, gió đẩy đưa khe khẽ, thật là thanh đạm, hợp với hồn thu. Song thưa để mặc bóng trăng vào cũng thuộc về trời cao; Một tiếng trên không ngỗng nước nào cũng nói về trời cao, gợi sự xa xăm, gợi cái bâng khuâng về không gian. Mấy chùm trước giậu hoa năm ngoái gợi cái bâng khuâng man mác về thời gian. Nước biếc trông như tầng khói phủ gợi niềm bay bổng nhẹ nhàng và mơ hồ như hư như thực. Cả khung cảnh mùa thu thanh thoát ấy dẫn đến ý hai cây kết: - Sao ta còn bị buộc chân ở đây, sa lầy trong vòng danh lợi ố bẩn phi nghĩa này? Sao ta chưa trả mũ từ quan quy khứ như Đào Uyên Minh, cho nhẹ nhõm trong sáng?
(Trích Nhà thơ của quê hương, làng cảnh Việt Nam, Xuân Diệu)
Thao tác lập luận chính được sử dụng trong đoạn trích trên là?
Lời giải
Thao tác lập luận chính được sử dụng trong đoạn trích trên là chứng minh.
- Tác giả đã đưa ra luận điểm “Bài Thu vịnh của Nguyễn Khuyến mang cái hồn của cảnh vật mùa thu hơn cả” và trích dẫn những lí lẽ, bằng chứng để chứng minh cho ý kiến trên:
+ Tác giả đã trích dẫn những câu thơ tiêu biểu để làm bằng chứng cho ý kiến trên (Song thưa để mặc bóng trăng vào/ Một tiếng trên không ngỗng nước nào / Mấy chùm trước giậu hoa năm ngoái / Nước biếc trông như tầng khói phủ)
+ Tác giả đưa ra những lí lẽ của mình để phân tích các bằng chứng làm nổi bật giá trị của tác phẩm thơ và phục vụ cho luận điểm mà tác giả đưa ra.
=> Các thao tác giải thích, bác bỏ, bình luận không nổi bật trong đoạn trích trên. Chọn B.
Câu 74
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Hình ảnh “áo chàm” trong câu thơ “Áo chàm đưa buổi phân ly” được dùng để gọi tên cho ai?
Đọc đoạn trích sau và trả lời câu hỏi:
Tiếng ai tha thiết bên cồn
Bâng khuâng trong dạ, bồn chồn bước đi
Áo chàm đưa buổi phân ly
Cầm tay nhau biết nói gì hôm nay...
(Việt Bắc – Tố Hữu)
Hình ảnh “áo chàm” trong câu thơ “Áo chàm đưa buổi phân ly” được dùng để gọi tên cho ai?
Lời giải
Câu 75
Đọc đoạn trích sau đây và trả lời câu hỏi:
Lao xao chợ cá làng ngư phủ
Dắng dỏi cầm ve lầu tịch dương.
(Cảnh ngày hè – Nguyễn Trãi)
Từ ngữ “cầm ve” trong câu thơ có nghĩa là gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Lao xao chợ cá làng ngư phủ
Dắng dỏi cầm ve lầu tịch dương.
(Cảnh ngày hè – Nguyễn Trãi)
Từ ngữ “cầm ve” trong câu thơ có nghĩa là gì?
Lời giải
Câu 76
Đọc đoạn trích sau đây và trả lời câu hỏi:
Trống cầm canh ở huyện đánh tung lên một tiếng ngắn, khô khan, không vang động ra xa, rồi chìm ngay vào bóng tối. Người vắng mãi, trên hàng ghế chị Tí mới có hai ba bác phu ngồi uống nước và hút thuốc lào. Nhưng một lát từ phố huyện đi ra, hai ba người cầm đèn lồng lung lay các bóng dài: mấy người làm công ở hiệu khách đi đón bà chủ ở tỉnh về. Bác Siêu nghển cổ nhìn ra phía ga, lên tiếng:
– Đèn ghi đã ra kia rồi.
Liên cũng trông thấy ngọn lửa xanh biếc, sát mặt đất, như ma trơi. Rồi tiếng còi xe lửa ở đâu vang lại, trong đêm khuya kéo dài ra theo gió xa xôi. Liên đánh thức em:
– Dậy đi, An. Tàu đến rồi.
(Trích Hai đứa trẻ – Thạch Lam)
Đoạn trích trên được viết theo phong cách ngôn ngữ nào?
Lời giải
Câu 77
Đọc đoạn trích sau đây và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được!
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
Đế Thích: Thế ông ngỡ tất cả mọi người đều được là mình toàn vẹn ư? Ngay cả tôi đây. Ở bên ngoài, tôi đâu có được sống theo những điều tôi nghĩ bên trong. Mà cả Ngọc Hoàng nữa, chính người lắm khi cũng phải khuôn ép mình cho xứng với danh vị Ngọc Hoàng. Dưới đất, trên trời đều thế cả, nữa là ông. Ông bị gạch tên khỏi sổ Nam Tào. Thân thể thật của ông đã tan rữa trong bùn đất, còn chút hình thù gì của ông đâu!
Hồn Trương Ba: Sống nhờ vào đồ đạc, của cải người khác, đã là chuyện không nên, đằng này đến cái thân tôi cũng phải sống nhờ anh hàng thịt. Ông chỉ nghĩ đơn giản là cho tôi sống, nhưng sống như thế nào thì ông chẳng cần biết!
(Hồn Trương Ba, da hàng thịt – Lưu Quang Vũ)
Câu nói “Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.” của hồn Trương Ba trong đoạn trích trên có ý nghĩa gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được!
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
Đế Thích: Thế ông ngỡ tất cả mọi người đều được là mình toàn vẹn ư? Ngay cả tôi đây. Ở bên ngoài, tôi đâu có được sống theo những điều tôi nghĩ bên trong. Mà cả Ngọc Hoàng nữa, chính người lắm khi cũng phải khuôn ép mình cho xứng với danh vị Ngọc Hoàng. Dưới đất, trên trời đều thế cả, nữa là ông. Ông bị gạch tên khỏi sổ Nam Tào. Thân thể thật của ông đã tan rữa trong bùn đất, còn chút hình thù gì của ông đâu!
Hồn Trương Ba: Sống nhờ vào đồ đạc, của cải người khác, đã là chuyện không nên, đằng này đến cái thân tôi cũng phải sống nhờ anh hàng thịt. Ông chỉ nghĩ đơn giản là cho tôi sống, nhưng sống như thế nào thì ông chẳng cần biết!
(Hồn Trương Ba, da hàng thịt – Lưu Quang Vũ)
Câu nói “Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.” của hồn Trương Ba trong đoạn trích trên có ý nghĩa gì?
Lời giải
Câu 78
Đọc đoạn trích sau đây và trả lời câu hỏi:
... Tiếng đòn gánh kĩu kịt nghe rõ rệt, khói theo gió tạt lại chỗ hai chị em. Bác Siêu đã tới gần, đặt gánh phở xuống đường. Bác cúi xuống nhóm lại lửa, thổi vào cái nứa con. Bóng bác mênh mang ngả xuống đất một vùng và kéo dài đến tận hàng rào hai bên ngõ. An là Liên ngửi thấy mùi phở thơm, nhưng ở cái huyện nhỏ này, quà bác Siêu bán là một thứ quà xa xỉ, nhiều tiền, hai chị em không bao giờ mua được. Liên nhớ lại khi ở Hà Nội chỉ được hưởng những thức quà ngon, lạ – bấy giờ mẹ Liên nhiều tiền – được đi chơi Bờ Hồ uống những cốc nước lạnh xanh đỏ. Ngoài ra, kỉ niệm nhớ lại không rõ rệt, chỉ là một vùng sáng rực và lấp lánh. Hà Nội nhiều đèn quá. Từ khi nhà Liên dọn về đây, từ khi có cái cửa hàng này, đêm nào Liên và em cũng phải ngồi trên chiếc chõng tre dưới gốc bàng với cái tối của quang cảnh phố chung quanh.
(Hai đứa trẻ – Thạch Lam)
Đoạn trích thể hiện phong cách nghệ thuật nổi bật nào của Thạch Lam?
Đọc đoạn trích sau đây và trả lời câu hỏi:
... Tiếng đòn gánh kĩu kịt nghe rõ rệt, khói theo gió tạt lại chỗ hai chị em. Bác Siêu đã tới gần, đặt gánh phở xuống đường. Bác cúi xuống nhóm lại lửa, thổi vào cái nứa con. Bóng bác mênh mang ngả xuống đất một vùng và kéo dài đến tận hàng rào hai bên ngõ. An là Liên ngửi thấy mùi phở thơm, nhưng ở cái huyện nhỏ này, quà bác Siêu bán là một thứ quà xa xỉ, nhiều tiền, hai chị em không bao giờ mua được. Liên nhớ lại khi ở Hà Nội chỉ được hưởng những thức quà ngon, lạ – bấy giờ mẹ Liên nhiều tiền – được đi chơi Bờ Hồ uống những cốc nước lạnh xanh đỏ. Ngoài ra, kỉ niệm nhớ lại không rõ rệt, chỉ là một vùng sáng rực và lấp lánh. Hà Nội nhiều đèn quá. Từ khi nhà Liên dọn về đây, từ khi có cái cửa hàng này, đêm nào Liên và em cũng phải ngồi trên chiếc chõng tre dưới gốc bàng với cái tối của quang cảnh phố chung quanh.
(Hai đứa trẻ – Thạch Lam)
Đoạn trích thể hiện phong cách nghệ thuật nổi bật nào của Thạch Lam?
Lời giải
Câu 79
Đọc đoạn trích sau và trả lời câu hỏi:
Để Đất Nước này là Đất Nước Nhân dân
Đất Nước của Nhân dân, Đất Nước của ca dao thần thoại
Dạy anh biết “yêu em từ thuở trong nôi”
Biết quý công cầm vàng những ngày lặn lội
Biết trồng tre đợi ngày thành gậy
Đi trả thù mà không sợ dài lâu.
(Đất Nước – Nguyễn Khoa Điềm)
Câu thơ nào thể hiện vẻ đẹp quý trọng nghĩa tình của dân tộc?
Đọc đoạn trích sau và trả lời câu hỏi:
Để Đất Nước này là Đất Nước Nhân dân
Đất Nước của Nhân dân, Đất Nước của ca dao thần thoại
Dạy anh biết “yêu em từ thuở trong nôi”
Biết quý công cầm vàng những ngày lặn lội
Biết trồng tre đợi ngày thành gậy
Đi trả thù mà không sợ dài lâu.
(Đất Nước – Nguyễn Khoa Điềm)
Câu thơ nào thể hiện vẻ đẹp quý trọng nghĩa tình của dân tộc?
Lời giải
Câu 80
Đọc đoạn trích sau đây và trả lời câu hỏi:
Sông Mã xa rồi Tây Tiến ơi!
Nhớ về rừng núi, nhớ chơi vơi.
Sài Khao sương lấp đoàn quân mỏi,
Mường Lát hoa về trong đêm hơi.
(Trích Tây Tiến – Quang Dũng)
Từ “nhớ chơi vơi” trong đoạn thơ trên thể hiện như thế nào về nỗi nhớ của nhà thơ?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Sông Mã xa rồi Tây Tiến ơi!
Nhớ về rừng núi, nhớ chơi vơi.
Sài Khao sương lấp đoàn quân mỏi,
Mường Lát hoa về trong đêm hơi.
(Trích Tây Tiến – Quang Dũng)
Từ “nhớ chơi vơi” trong đoạn thơ trên thể hiện như thế nào về nỗi nhớ của nhà thơ?
Lời giải
Câu 81
PHẦN 3: KHOA HỌC
Lĩnh vực: Khoa học tự nhiên và xã hội (50 câu – 60 phút)
Luận cương chính trị (10-1930) của Đảng Cộng sản Đông Dương xác định giai cấp lãnh đạo cách mạng là
Lời giải
Luận cương chính trị (10-1930) của Đảng Cộng sản Đông Dương xác định giai cấp lãnh đạo cách mạng là giai cấp công nhân-đội tiên phong là Đảng Cộng sản. Chọn B.
Lời giải
Lời giải
Cuối tháng 9-1953, Bộ Chính trị Trung ương Đảng đã họp bàn kế hoạch quân sự trong Đông-Xuân 1953-1954.
- Nhiệm vụ: tiêu diệt địch là chính.
- Phương hướng chiến lược: Tập trung lực lượng mở những cuộc tiến công vào những hướng quan trọng về chiến lược mà địch tương đối yếu, nhằm tiêu diệt sinh lực địch, giải phóng đất đai, buộc chúng phải phân tán lực lượng, tạo điều kiện thuận lợi để ta tiêu diệt địch.
Chọn D.
Lời giải
Một trong những mục tiêu quan trọng của Hiệp hội các quốc gia Đông Nam Á được nêu trong Hiệp ước Bali là tăng cường hợp tác phát triển có hiệu quả trong các lĩnh vực kinh tế, văn hóa, xã hội. Chọn B.
Câu 85
Sau Chiến tranh thế giới thứ nhất, kinh tế Việt Nam có những chuyển biến to lớn là do thực dân Pháp thi hành chính sách
Lời giải
Sau Chiến tranh thế giới thứ nhất, kinh tế Việt Nam có những chuyển biến to lớn là do thực dân Pháp thi hành chính sách khai thác thuộc địa lần thứ hai (1919-1929).
Cách mạng tháng Mười (1917) ở Nga đã mở ra con đường giải phóng dân tộc và giải phóng giai cấp cho nhiều quốc gia trên thế giới trong đó có Việt Nam. Nguyễn Ái Quốc đã tiếp nhận và truyền bá vào nước ta hình thành khuynh hướng cách mạng vô sản ở Việt Nam. Chọn C.
Câu 86
Trong bối cảnh "Chiến tranh lạnh" căng thẳng, về quân sự Nhật Bản có điểm gì khác so với các nước tư bản Tây Âu?
Lời giải
Ngày 3-5-1947, ban hành Hiến pháp mới quy định Nhật là nước quân chủ lập hiến (nhưng thực tế là chế độ dân chủ đại nghị tư sản). Theo đó Nhật cam kết từ bỏ việc tiến hành chiến tranh, không dùng hoặc đe dọa sử dụng vũ lực trong quan hệ quốc tế; không duy trì quân đội thường trực, chỉ có lực lượng Phòng vệ dân sự bảo đảm an ninh, trật tự trong nước.Không mang quân đội ra nước ngoài. Chọn D.
Câu 87
Đảng, Chính phủ và Chủ tịch Hồ Chí Minh quyết định phát động cuộc kháng chiến toàn quốc chống thực dân Pháp xâm lược (19-12-1946) là một quyết định
Lời giải
Lời giải
Lãnh thổ Liên Bang Nga rộng nhất thế giới.
- A. rộng nhất thế giới. → đúng. Chọn A.
- B. nằm hoàn toàn ở châu Âu. → sai, cả châu Âu và châu Á.
- C. giáp Ân Độ Dương. → Liên Bang Nga không giáp Ản Độ Dương.
- D. liền kề với Đại Tây Dương. → Liên bang Nga không liền kề Đại Tây Dương.
Lời giải
Mất an ninh lương thực liên quan trực tiếp đến làm suy giảm chất lượng cuộc sống. Chọn C.
Câu 90
Sự phân hóa đa dạng của tự nhiên và hình thành các vùng tự nhiên khác nhau ở nước ta chủ yếu do
Lời giải
Lời giải
Câu 92
Căn cứ vào Atlat Địa lí Việt Nam trang Hành chính, cho biết cấp hành chính của An Khê (Gia Lai) là .
Lời giải
Câu 93
Cho bảng số liệu:
CƠ CẤU SỬ DỤNG ĐẤT CỦA VIỆT NAM NĂM 2000 VÀ 2020 (%)

(Nguồn: Niên giám thống kê Việt Nam 2000, 2021)
Theo bảng số liệu, để thể hiện cơ cấu sử dụng đất của Việt Nam năm 2000 và 2020, dạng biểu đồ nào sau đây là không phù hợp?
Cho bảng số liệu:
CƠ CẤU SỬ DỤNG ĐẤT CỦA VIỆT NAM NĂM 2000 VÀ 2020 (%)
(Nguồn: Niên giám thống kê Việt Nam 2000, 2021)
Theo bảng số liệu, để thể hiện cơ cấu sử dụng đất của Việt Nam năm 2000 và 2020, dạng biểu đồ nào sau đây là không phù hợp?
Lời giải
Câu 94
Nguyên nhân chủ yếu nào sau đây làm cho thành phần kinh tế Nhà nước giữ vai trò chủ đạo trong nền kinh tế nước ta hiện nay?
Lời giải
Kinh tế Nhà nước giữ vai trò chủ đạo vì đang nắm giữ các ngành và lĩnh vực kinh tế then chốt.
A. Chiếm tỉ trọng cao nhất trong cơ cấu GDP. → Kinh tế Nhà nước không chiếm tỉ trọng cao nhất trong GDP.
B. Nắm giữ các ngành và lĩnh vực kinh tế then chốt. → đúng. Chọn B.
C. Chi phối tất cả các thành phần kinh tế khác. → sai, không chi phối tất cả các ngành.
D. Số lượng doanh nghiệp thành lập mới nhiều nhất. → sai, không có nhiều số lượng doanh nghiệp thành lập mới nhiều nhất.
Lời giải
A. diện tích rừng ngập mặn lớn. → không đủ bằng B.
B. nhiều bãi triều, đầm phá, rừng ngập mặn. → đúng, đủ.
C. nhiều đầm phá và các cửa sông rộng lớn. → sông là nước ngọt.
D. nhiều bãi triều, ô trũng ngập nước. → không đủ bằng B.
Câu 96
Trong thời gian gần đây, những nguyên nhân chủ yếu nào làm cho tình trạng xâm nhập mặn ở Đồng bằng sông Cửu Long diễn ra nghiêm trọng hơn?
Lời giải
Lời giải
Đông Nam Bộ không có giá trị sản xuất nông nghiệp lớn nhất. Các phương án còn lại là chính xác. Chọn D.
Lời giải
Hằng số điện môi là một đặc trưng quan trọng cho tính chất điện của một chất cách điện. Do vậy không có ý nghĩa gì khi nói về hằng số điện môi của dung dịch muối. Chọn D.
Câu 99
Trong các trường hợp truyền ánh sáng như hình vẽ, trường hợp nào có hiện tượng phản xạ toàn phần?
Trong các trường hợp truyền ánh sáng như hình vẽ, trường hợp nào có hiện tượng phản xạ toàn phần?

Lời giải
Hiện tượng phản xạ toàn là hiện tượng phản xạ toàn bộ tia sáng tới, xảy ra ở mặt phân cách giữa hai môi trường trong suốt. Điều kiện xảy ra phản xạ toàn phần là n1 > n2, i ≥ igh.
Chọn D.
Câu 100
Trong một thí nghiệm về sự khúc xạ ánh sáng, một học sinh ghi lại trên tấm bìa ba đường truyền của ánh sáng như hình vẽ, nhưng quên ghi chiều truyền. (Các) tia nào kể sau có thể là tia khúc xạ?

Lời giải
Theo định luật khúc xạ ánh sáng: Tia khúc xạ nằm trong mặt phẳng tới và nằm phía bên kia pháp tuyến so với tia tới.
Tia IR1 là tia khúc xạ, tia IR2 là tia phản xạ, tia IR3 là tia tới. Chọn A.
Câu 101
Đồ thị nào dưới đây có thể là đồ thị I = f(U) của một quang trở dưới chế độ rọi sáng không đổi. Biết I, U lần lượt là cường độ dòng điện, hiệu điện thế của quang trở.
Đồ thị nào dưới đây có thể là đồ thị I = f(U) của một quang trở dưới chế độ rọi sáng không đổi. Biết I, U lần lượt là cường độ dòng điện, hiệu điện thế của quang trở.

Lời giải
Chế độ rọi sáng vào quang trở không đổi nên điện trở của quang trở là một hằng số.
Mối quan hệ giữa U và I khi R không đổi nên đồ thị I = f(U) là một đường thẳng đi qua gốc tọa độ. Chọn D.
Câu 102
Sóng âm lần lượt truyền trong các môi trường: kim loại, nước và không khí. Tốc độ truyền âm có giá trị
Lời giải
Trong các môi trường đề bài cho, tốc độ truyền âm có giá trị lớn nhất khi truyền trong kim loại và nhỏ nhất khi truyền trong không khí. Chọn B.
Câu 103
Để xác định được mức độ cao của mực cà phê, nước ngọt, chất lỏng, trong lon, hộp; người ta sử dụng thiết bị cảm biến quang. Cảm biến quang là thiết bị nhạy sáng, khi ánh sáng chiếu vào thì kim trên đồng hồ của nó nhảy số thể hiện tương ứng năng lượng mà ánh sáng chiếu vào. Để xác định khoảng vân trong thí nghiệm giao thoa ánh sáng với khe I-âng người ta cũng sử dụng cảm biến quang. Biết khoảng cách giữa hai khe là 1 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2 m. Nguồn sáng phát đồng thời hai bức xạ có bước sóng 450 nm và 750 nm. Di chuyển cảm biến quang trên màn từ vân sáng trung tâm ra xa. Vị trí cảm biến quang hiện số “0” lần đầu tiên cách vân sáng trung tâm một khoảng bằng

Lời giải
Những vị trí vân sáng là những vị trí trùng nhau.
Ta có \(\frac{{{k_1}}}{{{k_2}}} = \frac{{{{\rm{\lambda }}_{\rm{2}}}}}{{{{\rm{\lambda }}_{\rm{1}}}}} = \frac{5}{3}\), khoảng vân trùng \({i_t} = {k_1}{i_1} = {k_1}\frac{{{{\rm{\lambda }}_{\rm{1}}}D}}{a} = 4,5\;\)mm.
Vị trí cảm biến quang hiện số "0" lần đầu tiên chính là vân tối trùng đầu tiên nên ta có \({{\rm{x}}_{{\rm{tt}}}} = ({\rm{k}} + 0,5){{\rm{i}}_{\rm{t}}} = (0 + 0,5).4,5 = 2,25\;\)mm. Chọn D.
Câu 104
Trong lò phản ứng PWR, người ta tiến hành bắn một nơtron chậm vào hạt nhân urani đã được làm giàu ( urani tự nhiên chỉ chứa 0,7% \[_{92}^{235}U,\] được làm giàu là tăng hàm lượng đến 3% \[_{92}^{235}U\]) làm \[_{92}^{235}U\]chuyển sang trạng thái kích thích và phân hạch thành hạt Y và X đồng thời tạo ra 3 nơtron. Hạt nhân X sinh ra là
Lời giải
Ta có \(_{92}^{235}{\rm{U}} + _0^1{\rm{n}} \to _{39}^{95}{\rm{Y}} + _{53}^{138}{\rm{I}} + 3_0^1{\rm{n}}\), do vậy X là \(_{53}^{138}{\rm{I}}\). Chọn A.
Câu 105
Một con lắc lò xo treo thẳng đứng. Kích thích cho con lắc dao động điều hòa theo phương thẳng đứng. Chu kì và biên độ dao động của con lắc lần lượt là 0,5 s và 12,5 cm. Chọn trục x thẳng đứng, chiều dương hướng xuống gốc tọa độ tại vị trí cân bằng, gốc thời gian t = 0 khi vật qua vị trí cân bằng theo chiều dương. Lấy g = 10 m/s2 và \[{{\rm{\pi }}^2} = 10\]. Thời gian ngắn nhất kể từ khi t = 0 đến khi lực đàn hồi của lò xo có độ lớn cực tiểu là
Lời giải
+ Độ dãn của lò xo tại vị trí cân bằng \(\Delta \ell = \frac{{{\rm{mg}}}}{{\rm{k}}} = \frac{{{{\rm{T}}^2}\;{\rm{g}}}}{{4{{\rm{\pi }}^2}}} = \frac{{0,{5^2}.10}}{{4.10}} = 0,0625\;{\rm{m}} = 6,25\;{\rm{cm}}{\rm{.}}\)
+ Biên độ \({\rm{A}} = 12,5\;{\rm{cm}}{\rm{.}}\)

Thấy \(\Delta \ell < {\rm{A}} \Rightarrow \) Lực đàn hồi có độ lớn cực tiểu tại vị trí lò xo không biến dạng \({\rm{x}} = - \Delta \ell = - \frac{{\rm{A}}}{2}\).
Thời gian ngắn nhất kể từ \(t = 0\) đến khi lực đàn hời của lò xo có độ lớn cực tiểu: \(\Delta t = \frac{{\Delta {\rm{\varphi }}}}{{\rm{\omega }}}\).
Từ vòng tròn lượng giác, ta có \(\Delta {\rm{\varphi }} = \frac{{7{\rm{\pi }}}}{6} \Rightarrow \Delta t = \frac{{\frac{{7{\rm{\pi }}}}{6}}}{{\frac{{2{\rm{\pi }}}}{{0,5}}}} = \frac{7}{{24}}s\). Chọn C.
Câu 106
Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi, tần số f thay đổi được vào hai đầu đoạn mạch gồm điện trở thuần, cuộn cảm thuần và tụ điện mắc nối tiếp. Khi f = f0 thì điện áp hiệu dụng hai đầu tụ điện UC = U. Khi f = f0 + 75 (Hz) thì điện áp hiệu dụng hai đầu cuộn cảm UL = U và hệ số công suất của toàn mạch lúc này là \[\frac{1}{{\sqrt 3 }}\]. Hỏi f0 có giá trị bằng bao nhiêu Hz? Làm tròn đến chữ số thập phân thứ hai.
Đáp án: ……….
Đặt điện áp xoay chiều có giá trị hiệu dụng U không đổi, tần số f thay đổi được vào hai đầu đoạn mạch gồm điện trở thuần, cuộn cảm thuần và tụ điện mắc nối tiếp. Khi f = f0 thì điện áp hiệu dụng hai đầu tụ điện UC = U. Khi f = f0 + 75 (Hz) thì điện áp hiệu dụng hai đầu cuộn cảm UL = U và hệ số công suất của toàn mạch lúc này là \[\frac{1}{{\sqrt 3 }}\]. Hỏi f0 có giá trị bằng bao nhiêu Hz? Làm tròn đến chữ số thập phân thứ hai.
Đáp án: ……….
Lời giải
Quy bài toán từ \({\rm{f}} \to \infty \)
+ TH1: Xét \({U_C} = U \Leftrightarrow {Z_{C1}} = Z \Rightarrow {R^2} = 2{Z_{{\rm{L}}1}}{Z_{C1}} - Z_{L1}^2\)
+ TH2: Xét \({{\rm{U}}_{\rm{L}}} = {\rm{U}} \Rightarrow {{\rm{Z}}_{{\rm{L}}2}} = {\rm{Z}} \Rightarrow {{\rm{R}}^2} = 2{{\rm{Z}}_{{\rm{L}}2}}{{\rm{Z}}_{{\rm{C}}2}} - {\rm{Z}}_{{\rm{C}}2}^2 = 2{{\rm{Z}}_{{\rm{L}}1}}{{\rm{Z}}_{{\rm{C}}1}} - {\rm{Z}}_{{\rm{L}}1}^2\)
\(\frac{{2\;{\rm{L}}}}{{\rm{C}}} - \frac{1}{{{{({\rm{C\omega }})}^2}}} = \frac{{2\;{\rm{L}}}}{{\rm{C}}} - {({\rm{L\omega }})^2} \Rightarrow 1 = {\left( {{\rm{LC\omega }}{{\rm{\omega }}_0}} \right)^2} \Rightarrow {\rm{LC\omega }}{{\rm{\omega }}_0} = 1\)
Đồng thời \(\cos {{\rm{\varphi }}_2} = \frac{1}{{\sqrt 3 }} \Rightarrow \sin {{\rm{\varphi }}_2} = \frac{{\sqrt 6 }}{3} = \frac{{{U_{\rm{L}}} - {U_C}}}{U} = \frac{{{U_L} - {U_C}}}{{{U_L}}} = 1 - \frac{{{U_C}}}{{{U_L}}} \Rightarrow \frac{{{Z_C}}}{{{Z_L}}} = 1 - \frac{{\sqrt 6 }}{3}\)
\(\frac{1}{{{\mathop{\rm LC}\nolimits} {\omega ^2}}} = 1 - \frac{{\sqrt 6 }}{3}\left( {{\rm{\omega }} = {{\rm{\omega }}_0} + 150{\rm{\pi }}} \right) \Rightarrow {\mathop{\rm LC}\nolimits} = \frac{{3 + \sqrt 6 }}{{{{\rm{\omega }}^2}}}(2)\)
Ta có: \(1 = \left[ {(3 + \sqrt 6 )\frac{{{{\rm{\omega }}_0}}}{{\rm{\omega }}}} \right] \Rightarrow {\rm{\omega }} = (3 + \sqrt 6 ){{\rm{\omega }}_0} \Rightarrow {\rm{f}} = (3 + \sqrt 6 ){{\rm{f}}_0} \Rightarrow {\rm{f}} \approx 16,9\;{\rm{Hz}}\). Đáp án. 16,9.
Câu 107
Khi electron ở quỹ đạo dừng thứ n thì năng lượng của nguyên tử hiđrô được xác định bởi công thức \({{\rm{E}}_{\rm{n}}} = \frac{{ - 13,6}}{{{{\rm{n}}^2}}}\)(eV) (với n = 1, 2, 3,...). Khi electron trong nguyên tử hiđrô chuyển từ quỹ đạo dừng n = 3 về quỹ đạo dừng n = 1 thì nguyên tử phát ra phôtôn có bước sóng \({{\rm{\lambda }}_{\rm{1}}}\). Khi electron chuyển từ quỹ đạo dừng n = 5 về quỹ đạo dừng n = 2 thì nguyên tử phát ra phôtôn có bước sóng \({{\rm{\lambda }}_{\rm{2}}}\). Mối liên hệ giữa hai bước sóng \({{\rm{\lambda }}_{\rm{1}}}\) và \({{\rm{\lambda }}_{\rm{2}}}\), là
Lời giải
Ta có \({{\rm{\lambda }}_1} = \frac{{hc}}{{{E_3} - {E_1}}};{{\rm{\lambda }}_2} = \frac{{hc}}{{{E_5} - {E_2}}} \Rightarrow \frac{{{{\rm{\lambda }}_{\rm{1}}}}}{{{{\rm{\lambda }}_{\rm{2}}}}} = \frac{{{E_5} - {E_2}}}{{{E_3} - {E_1}}} \Rightarrow \frac{{{{\rm{\lambda }}_{\rm{1}}}}}{{{{\rm{\lambda }}_{\rm{2}}}}} = \frac{{\frac{{ - 13,6}}{{{5^2}}} - \frac{{ - 13,6}}{{{2^2}}}}}{{\frac{{ - 13,6}}{{{3^2}}} - \frac{{ - 13,6}}{{{1^2}}}}} = \frac{{189}}{{800}}\).
Chọn C.
Câu 108
Bảng dưới đây thể hiện độ tan của các chất trong 100 gam nước ở các nhiệt độ khác nhau.
Nồng độ chất tan (g/100g \({H_2}O\))
Nhiệt độ (\(^oC\))
KCl
\(NaN{O_3}\)
HCl
\(N{H_4}Cl\)
NaCl
\(N{H_3}\)
0
28
72
83
29
37
90
20
33
86
72
37
37
55
40
39
105
63
46
38
36
60
45
125
55
55
38
23
80
51
145
48
66
39
14
100
57
165
43
77
40
8
Đồ thị dưới đây thể hiện rõ nhất mối quan hệ giữa độ tan và nhiệt độ của chất nào?
Bảng dưới đây thể hiện độ tan của các chất trong 100 gam nước ở các nhiệt độ khác nhau.
|
Nồng độ chất tan (g/100g \({H_2}O\)) |
|||||
Nhiệt độ (\(^oC\)) |
KCl |
\(NaN{O_3}\) |
HCl |
\(N{H_4}Cl\) |
NaCl |
\(N{H_3}\) |
0 |
28 |
72 |
83 |
29 |
37 |
90 |
20 |
33 |
86 |
72 |
37 |
37 |
55 |
40 |
39 |
105 |
63 |
46 |
38 |
36 |
60 |
45 |
125 |
55 |
55 |
38 |
23 |
80 |
51 |
145 |
48 |
66 |
39 |
14 |
100 |
57 |
165 |
43 |
77 |
40 |
8 |
Đồ thị dưới đây thể hiện rõ nhất mối quan hệ giữa độ tan và nhiệt độ của chất nào?
Lời giải
Đồ thị cho thấy khi tăng nhiệt độ, nồng độ chất tan \(\left( {{\rm{g}}/100\;{\rm{g}}{{\rm{H}}_2}{\rm{O}}} \right)\) giảm dần. Vậy dựa trên số liệu bảng thấy thể hiện rõ nhất mối quan hệ giữa độ tan và nhiệt độ của HCl. Chọn A.
Câu 109
Khi nung nóng, \({\rm{Ca}}{{\rm{C}}_2}{{\rm{O}}_4} \cdot {{\rm{H}}_2}{\rm{O}}\) sẽ bắt đầu mất dần khối lượng. Đồ thị hình bên biểu diễn sự phụ thuộc của khối lượng chất rắn vào nhiệt độ.

Thành phần gần nhất của chất rắn sau khi nhiệt độ đạt đến \({500^o }{\rm{C}}\) là
Lời giải
Tại \({500^o }{\rm{C}}\), phần trăm khối lượng còn lại là \(70\% .\)

Nhìn theo đồ thị có thể thấy tại \({500^o }{\rm{C}}\) thành phần chất rắn còn lại là \({\rm{CaC}}{{\rm{O}}_3}.\)
Chọn C.
Câu 110
Một lọ đựng dung dịch saccharose (dung dịch X) để lâu ngày. Để xác định nồng độ saccharose trong dung dịch X, tiến hành như sau: Thí nghiệm 1: thêm dung dịch \({\rm{AgN}}{{\rm{O}}_3}\) trong \({\rm{N}}{{\rm{H}}_3}\) từ từ tới dư vào \(5,00\;{\rm{mL}}\) dung dịch X thấy xuất hiện kết tủa, lọc kết tủa, làm khô cẩn thận thu được \(0,432\;{\rm{g}}\) kết tủa. Thí nghiệm 2: tiến hành thủy phân hoàn toàn \(5,00\;{\rm{mL}}\)dung dịch X, sau đó thêm dung dịch \({\rm{AgN}}{{\rm{O}}_3}\) trong \({\rm{N}}{{\rm{H}}_3}\) từ từ tới dư, thấy xuất hiện kết tủa, lọc kết tủa, làm khô cẩn thận thu được 2,5488g kết tủa. Nồng độ của saccharose trong dung dịch X là
Lời giải
Thí nghiệm 1: Kiểm tra xem khi để lâu ngày, lượng saccharose đã bị thủy phân thành glucose và fructose là bao nhiêu (vì saccharose không tham gia phản ứng với \({\rm{AgN}}{{\rm{O}}_3}\) trong \({\rm{N}}{{\rm{H}}_3}\)).
Lưu ý: Trong môi trường kiềm thì fructose và glucose có thể chuyển hoá qua lại lẫn nhau.
Fructose Glucose
\({{\rm{n}}_ \downarrow } = \frac{{0,432}}{{108}} = 0,004(\;{\rm{mol}})\)

Thí nghiệm 2: Tiến hành để đưa toàn bộ về \({{\rm{C}}_6}{{\rm{H}}_{12}}{{\rm{O}}_6}\) (bao gồm cả saccharose chưa bị thủy phân), xác định được số mol saccharose ban đầu.
\({{\rm{n}}_ \downarrow } = \frac{{2,5488}}{{108}} = 0,0236\,\,(\;{\rm{mol}})\)
Ta có:

Số mol saccharose còn lại trong dung dịch \({\rm{X}} = 0,0059 - 0,001 = 0,0049(\;{\rm{mol}})\)
Nồng độ của saccharose trong dung dịch \({\rm{X}} = \frac{{0,0049}}{{{{5.10}^{ - 3}}}} = 0,98{\rm{M}}{\rm{.}}\)
Chọn B.
Câu 111
Công thức cấu tạo của 2 amino acid: Proline (Pro) và Glycine (Gly) được cho dưới đây:
Cho 0,25 mol hỗn hợp Proline (Pro) và Glycine (Gly) phản ứng với V lít dung dịch NaOH Sau khi các phản ứng xảy ra hoàn toàn, thể tích dung dịch NaOH đã phản ứng là
Công thức cấu tạo của 2 amino acid: Proline (Pro) và Glycine (Gly) được cho dưới đây:

Cho 0,25 mol hỗn hợp Proline (Pro) và Glycine (Gly) phản ứng với V lít dung dịch NaOH Sau khi các phản ứng xảy ra hoàn toàn, thể tích dung dịch NaOH đã phản ứng là
Lời giải
Công thức cấu tạo của 2 amino acid: Proline (Pro) và Glycine (Gly) cho thấy mỗi phân tử amino acid chỉ chứa 1 nhóm - \({\rm{COOH}}\) (nhóm chức tham gia phản ứng với \({\rm{NaOH}}\)).
Ta có:
\(\begin{array}{l} - {\rm{COOH}} + {\rm{NaOH}} \to - {\rm{COONa}} + {{\rm{H}}_2}{\rm{O}}\\\quad 0,25\quad \,\,\,\,\,0,25\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,mol\end{array}\)
\( \Rightarrow V = \frac{{0,25}}{{0,5}} = 0,5\)lít. Chọn A.
Câu 112
Thực hiện phản ứng điều chế isoamyl acetate (dầu chuối) theo trình tự sau:
- Bước 1: Cho \(2{\rm{ml}}\) isoamyl alcohol, \(2{\rm{ml}}\) acetic acid nguyên chất và 2 giọt sulfuric acid đặc vào ống nghiệm khô.
- Bước 2: Lắc đều, đun cách thủy hỗn hợp 8-10 phút trong nồi nước sôi.
- Bước 3: Làm lạnh, sau đó rót \(2{\rm{ml}}\) dung dịch \({\rm{NaCl}}\) bão hòa vào ống nghiệm.
Phát biểu nào sau đây sai?
Thực hiện phản ứng điều chế isoamyl acetate (dầu chuối) theo trình tự sau:
- Bước 1: Cho \(2{\rm{ml}}\) isoamyl alcohol, \(2{\rm{ml}}\) acetic acid nguyên chất và 2 giọt sulfuric acid đặc vào ống nghiệm khô.
- Bước 2: Lắc đều, đun cách thủy hỗn hợp 8-10 phút trong nồi nước sôi.
- Bước 3: Làm lạnh, sau đó rót \(2{\rm{ml}}\) dung dịch \({\rm{NaCl}}\) bão hòa vào ống nghiệm.
Phát biểu nào sau đây sai?
Lời giải
A. Đúng. \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\) đặc là chất xúc tác, ngoài ra \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\) đặc hút nước, làm cân bằng chuyển dịch theo chiều thuận Þ tăng hiệu suất phản ứng.
B. Đúng. \({\rm{NaCl}}\) thêm vào làm tăng khối lượng riêng dung dịch, cũng như ester có tan 1 ít cũng bị đẩy ra, làm cho dung dịch phân thành 2 lớp, ester nhẹ hơn nên ở phía trên.
C. Đúng. Phản ứng este hóa là phản ứng thuận nghịch nên ống nghiệm vẫn còn chứa isoamyl alcohol và acetic acid.
D. Sai. Dung dịch \({\rm{NaCl}}\) bão hòa được thêm vào để ester tách ra nhanh hơn.
Chọn D.
Lời giải
Tơ visco là polymer bán tổng hợp.
Tinh bột, cellulose là polymer thiên nhiên.
Chọn B.
Câu 114
Đốt cháy hoàn toàn m gam \({\rm{Fe}}{{\rm{S}}_2}\)bằng một lượng \({{\rm{O}}_2}\) vừa đủ, thu được khí X. Hấp thụ hết X vào dùng dịch \({\rm{Ba}}{({\rm{OH}})_2}\) dư, sau phản ứng thu được 43,4 gam kết tủa. Giá trị của m là
Lời giải
Ta có: \({n_{BaS{O_3}}} = \frac{{43,4}}{{217}} = 0,2\,mol\)
Bảo toàn nguyên tố S ta có: \({n_{Fe{S_2}}} = \frac{1}{2}{n_{BaS{O_3}}} = 0,1\,mol\) \( \Rightarrow {{\rm{m}}_{Fe{S_2}}} = 0,1 \cdot 120 = 12\;{\rm{g}}{\rm{.}}\)
Chọn B.
Câu 115
Hợp chất Z không tan trong nước nhưng có thể tan trong môi trường có pH thấp. Hợp chất Z có thể là chất nào sau đây?
Lời giải
Barium carbonate \(\left( {{\rm{BaC}}{{\rm{O}}_3}} \right)\) không tan trong nước, tan trong môi trường acid:
\[BaC{O_3} + 2{H^ + } \to B{a^{2 + }} + C{O_2} + {H_2}O\]
Loại B. Barium chloride \(\left( {{\rm{BaC}}{{\rm{l}}_2}} \right)\) do tan trong nước.
Loại C. Barium hydroxide \(\left( {{\rm{Ba}}{{({\rm{OH}})}_2}} \right)\) do tan trong nước.
Loại D. Barium sulfate \(\left( {{\rm{BaS}}{{\rm{O}}_4}} \right)\) do không tan trong môi trường acid.
Chọn A.
Lời giải
Các biện pháp làm cân bằng chuyển dịch theo chiều thuận:
+ Giảm nhiệt độ.
+ Tăng áp suất.
+ Tăng nồng độ \({{\rm{N}}_2}\) hoặc \({{\rm{H}}_2}\).
+ Giảm nồng độ NH3.
Chọn C.
Câu 117
Tiến hành điện phân dung dịch chứa \({\rm{m}}\) gam hỗn hợp \({\rm{CuS}}{{\rm{O}}_4}\) và \({\rm{NaCl}}\) (hiệu suất \(100\% \), điện cực trơ, màng ngăn xốp), đến khi nước bắt đầu bị điện phân ở cả hai điện cực thì ngừng điện phân, thu được dung dịch X ( biết dung dịch X làm phenolphthalein hóa hồng) và 9,916 lít khí (đkc) ở anode. Dung dịch X hòa tan tối đa 20,4 gam \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}.\) Giá trị của m là
Đáp án: ……….
Tiến hành điện phân dung dịch chứa \({\rm{m}}\) gam hỗn hợp \({\rm{CuS}}{{\rm{O}}_4}\) và \({\rm{NaCl}}\) (hiệu suất \(100\% \), điện cực trơ, màng ngăn xốp), đến khi nước bắt đầu bị điện phân ở cả hai điện cực thì ngừng điện phân, thu được dung dịch X ( biết dung dịch X làm phenolphthalein hóa hồng) và 9,916 lít khí (đkc) ở anode. Dung dịch X hòa tan tối đa 20,4 gam \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}.\) Giá trị của m là
Đáp án: ……….
Lời giải
Dung dịch \({\rm{X}}\) làm phenolphthalein hóa hồng nên dung dịch \({\rm{X}}\) có chứa \({\rm{O}}{{\rm{H}}^ - }\)
Þ Cathode điện phân hết \[C{u^{2 + }}\], rồi điện phân nước đến khi anode vừa điện phân hết \(C{l^ - }\)thì dừng điện phân.
\({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} + 2{\rm{O}}{{\rm{H}}^ - } \to 2{\rm{AlO}}_2^ - + {{\rm{H}}_2}{\rm{O}}\)
Ta có: \({n_{{\rm{C}}{{\rm{l}}_2}}} = \frac{{9,916}}{{24,79}} = 0,4\;{\rm{mol;}}\,{{\rm{n}}_{A{l_2}{O_3}}} = \frac{{20,4}}{{102}} = 0,2\,mol.\)
Þ \({n_{NaCl}} = 2{n_{C{l_2}}} = 0,8\,mol\)
\(\begin{array}{l}{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3} + 2{\rm{O}}{{\rm{H}}^ - } \to 2{\rm{AlO}}_2^ - + {{\rm{H}}_2}{\rm{O}}\\\,\,\,{\rm{0,2}} \to \,\,\,0,4\;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,({\rm{mol)}}\end{array}\)
Xét quá trình điện phân ở 2 cực:
Cathode |
Anode |
\({\rm{C}}{{\rm{u}}^{2 + }} + 2{\rm{e}} \to {\rm{Cu}}\) \(2{{\rm{H}}_2}{\rm{O}} + 2{\rm{e}} \to 2{\rm{O}}{{\rm{H}}^ - } + {{\rm{H}}_2}\) |
\(2{\rm{C}}{{\rm{l}}^ - } \to {\rm{C}}{{\rm{l}}_2} + 2{\rm{e}}\)
|
Bảo toàn electron: \(2{{\rm{n}}_{{\rm{C}}{{\rm{u}}^{2 + }}}} + {{\rm{n}}_{{\rm{O}}{{\rm{H}}^ - }}} = 2{{\rm{n}}_{{\rm{C}}{{\rm{l}}_2}}} \Rightarrow {{\rm{n}}_{{\rm{C}}{{\rm{u}}^{2 + }}}} = 0,2\) mol.
\( \Rightarrow {\rm{m}} = 0,2 \cdot 160 + 0,8 \cdot 58,5 = 78,8\,(\;{\rm{g}})\).
Đáp án: 78,8
Câu 118
Hoocmôn thực vật có những đặc điểm chung nào sau đây?
I. Có nồng độ thấp nhưng gây ra những biến đổi mạnh mẽ trong cơ thể.
II. Được tạo ra ở một nơi nhưng gây ra phản ứng ở một nơi khác trong cây.
III. Tính chuyên hóa thấp hơn so với hoocmôn ở động vật bậc cao.
IV. Tất cả các hoocmôn đều gây kích thích sinh trưởng.
Hoocmôn thực vật có những đặc điểm chung nào sau đây?
I. Có nồng độ thấp nhưng gây ra những biến đổi mạnh mẽ trong cơ thể.
II. Được tạo ra ở một nơi nhưng gây ra phản ứng ở một nơi khác trong cây.
III. Tính chuyên hóa thấp hơn so với hoocmôn ở động vật bậc cao.
IV. Tất cả các hoocmôn đều gây kích thích sinh trưởng.
Lời giải
Các đặc điểm đúng là I, II, III.
IV. Sai. Ngoài hoocmôn thực vật gây kích thích sinh trưởng còn có hoocmôn gây ức chế sinh trưởng.
Chọn A.
Lời giải
- Nguyên nhân của hiện tượng cụp lá của cây trinh nữ khi va chạm là do sức trương của nửa dưới của các chỗ phình bị giảm do nước di chuyển vào những mô lân cận.
- Nguyên nhân của hiện tượng đóng mở khí khổng là do sự biến động hàm lượng nước trong tế bào khí khổng.
Chọn B.
Câu 120
Một trong những nguyên nhân có thể giải thích cho việc nhịp tim của trẻ em thường cao hơn người trưởng thành là do
Lời giải
- Một trong những nguyên nhân có thể giải thích cho việc nhịp tim của trẻ em thường cao hơn người trưởng thành là do cơ thể của trẻ em đang trong giai đoạn phát triển, cần nhiều dưỡng khí và chất dinh dưỡng.
- Các ý còn lại sai do:
+ Cấu tạo của tim trẻ không phức tạp hơn người trưởng thành.
+ Hoạt động lao động nặng nhọc của người lớn thường tiêu tốn nhiều năng lượng hơn so với hoạt động vui chơi của trẻ.
+ Người lớn thường gặp phải áp lực công việc ảnh hưởng đến tâm lí nhiều hơn trẻ nhỏ.
Chọn B.
Câu 121
Trong quá trình nhân đôi ADN, nuclêôtit guanin của môi trường nội bào liên kết bổ sung với nuclêôtit nào của mạch làm khuôn?
Lời giải
Trong quá trình nhân đôi ADN, nuclêôtit guanin của môi trường nội bào liên kết bổ sung với nuclêôtit xitôzin và ngược lại, nuclêôtit timin của môi trường nội bào liên kết bổ sung với nuclêôtit ađênin và ngược lại. Chọn B.
Câu 122
Ở một loài thực vật lưỡng bội có 6 nhóm gen liên kết. Xét ba thể đột biến số lượng NST là thể một, thể ba và thể tam bội. Số lượng NST có trong mỗi tế bào sinh dưỡng của mỗi thể đột biến khi các tế bào đang ở kì sau của nguyên phân theo thứ tự thể một, thể ba và thể tam bội là
Lời giải
Có 6 nhóm gen liên kết → 2n = 12. Vậy thể một chứa 2n - 1 = 11, thể ba chứa 2n + 1 = 13, thể tam bội chứa 3n = 18. Ở kì sau của nguyên phân, các NST đã nhân đôi và tách ra phân li về 2 phía nên số lượng NST trong thể một, thể ba, thể tam bội lần lượt là: 22, 26, 36. Chọn B.
Câu 123
Nuôi cấy các hạt phấn của một cây có kiểu gen AaBbDdee để tạo nên các mô đơn bội. Sau đó xử lí các mô đơn bội này bằng cônsixin để gây lưỡng bội hoá, thu được 80 cây lưỡng bội. Cho biết mỗi gen quy định một tính trạng, không xảy ra đột biến gen và đột biến cấu trúc nhiễm sắc thể. Theo lí thuyết, khi nói về 80 cây này, phát biểu nào dưới đây đúng?
Lời giải
Cây cho hạt phấn có kiểu gen: AaBbDdee.
A. Sai. Cây cho hạt phấn mang cặp ee nên không thể tạo ra cây có kiểu gen mang cặp EE.
B. Đúng. Các cây tạo ra bằng phương pháp nuôi cấy hạt phấn sau đó lưỡng bội hóa có kiểu gen thuần chủng nên khi giảm phân chỉ cho 1 loại giao tử.
C. Sai. Các cây này có thể có kiểu gen khác nhau nên kiểu hình khác nhau.
D. Sai. Số kiểu gen tối đa = số loại giao tử được tạo ra = 23 = 8.
Chọn B.
Lời giải
A. Sai. Hội chứng suy giảm miễn dịch do HIV gây ra có ở cả nam và nữ.
B. Đúng. Hội chứng Tơcnơ mang XO – thiếu 1 NST X, chỉ xuất hiện ở nữ.
C. Sai. Hội chứng Claiphentơ mang XXY – thừa 1 NST X, chỉ xuất hiện ở nam.
D. Sai. Hội chứng Đao mang 3 NST số 21, có ở cả nam và nữ.
Chọn B.
Câu 125
Xét chuỗi thức ăn có 5 mắt xích dinh dưỡng: Cỏ → Sâu → Nhái → Rắn → Diều hâu. Giả sử trong môi trường có chất độc DDT ở nồng độ thấp. Theo lí thuyết, có bao nhiêu phát biểu sau đây đúng?
I. Có 4 loài thuộc sinh vật tiêu thụ.
II. Tổng sinh khối của sâu, nhái, rắn, diều hâu lớn hơn tống sinh khối của cỏ.
III. Diều hâu sẽ bị nhiễm độc DDT với nồng độ cao nhất.
IV. Nếu loài sâu bị giảm số lượng thì loài rắn sẽ tăng số lượng.
Xét chuỗi thức ăn có 5 mắt xích dinh dưỡng: Cỏ → Sâu → Nhái → Rắn → Diều hâu. Giả sử trong môi trường có chất độc DDT ở nồng độ thấp. Theo lí thuyết, có bao nhiêu phát biểu sau đây đúng?
I. Có 4 loài thuộc sinh vật tiêu thụ.
II. Tổng sinh khối của sâu, nhái, rắn, diều hâu lớn hơn tống sinh khối của cỏ.
III. Diều hâu sẽ bị nhiễm độc DDT với nồng độ cao nhất.
IV. Nếu loài sâu bị giảm số lượng thì loài rắn sẽ tăng số lượng.
Lời giải
Có 2 phát biểu đúng là I và III.
I. Đúng. Vì chuỗi thức ăn này có 5 mắt xích, trong đó chỉ có cỏ là sinh vật sản xuất; còn các loài còn lại đều là sinh vật tiêu thụ.
II. Sai. Vì hiệu suất sinh thái của mỗi bậc dinh dưỡng thường chỉ đạt khoảng 10%. Do đó, tổng sinh khối của các loài tiêu thụ chỉ chiếm khoảng 11,11% so với tổng sinh khối của cỏ.
III. Đúng. Vì chất độc sẽ được tích lũy qua chuỗi thức ăn, ở bậc dinh dưỡng càng cao thì lượng độc tố được tích lũy trong cơ thể càng lớn.
IV. Sai. Vì khi sâu bị giảm số lượng thì các loài nhái, rắn, diều hâu đều giảm số lượng.
Chọn C.
Câu 126
Nghiên cứu sự thay đổi thành phần kiểu gen ở một quần thể qua 5 thế hệ liên tiếp được kết quả:
Thành phần kiểu gen
Thế hệ \({F_1}\)
Thế hệ \({F_2}\)
Thế hệ \({F_3}\)
Thế hệ \({F_4}\)
Thế hệ \({F_5}\)
AA
0,64
0,64
0,2
0,16
0,16
Aa
0,32
0,32
0,4
0,48
0,48
Aa
0,04
0,04
0,4
0,36
0,36
Nhân tố gây nên sự thay đổi cấu trúc di truyền của quần thể ở thế hệ F3 là
Nghiên cứu sự thay đổi thành phần kiểu gen ở một quần thể qua 5 thế hệ liên tiếp được kết quả:
Thành phần kiểu gen |
Thế hệ \({F_1}\) |
Thế hệ \({F_2}\) |
Thế hệ \({F_3}\) |
Thế hệ \({F_4}\) |
Thế hệ \({F_5}\) |
AA |
0,64 |
0,64 |
0,2 |
0,16 |
0,16 |
Aa |
0,32 |
0,32 |
0,4 |
0,48 |
0,48 |
Aa |
0,04 |
0,04 |
0,4 |
0,36 |
0,36 |
Nhân tố gây nên sự thay đổi cấu trúc di truyền của quần thể ở thế hệ F3 là
Lời giải
Muốn xác định nhân tố gây nên sự thay đổi cấu trúc di truyền thì phải dựa vào sự thay đổi tần số alen qua mỗi thế hệ.
- \({F_1}\) có tần số alen A = 0,64 + 0,32/2 = 0,8.
- \({F_2}\) có tần số alen A = 0,64 + 0,32/2 = 0,8.
- \({F_3}\) có tần số alen A = 0,2 + 0,4/2 = 0,4.
- \({F_4}\) có tần số alen A = 0,16 + 0,48/2 = 0,4.
- \({F_5}\) có tần số alen A = 0,16 + 0,48/2 = 0,4.
Như vậy, tần số alen chỉ thay đổi ở giai đoạn từ F2 sang F3 và sự thay đổi này diễn ra một cách đột ngột (tần số A từ 0,8 chuyển xuống còn 0,4) nên quần thể trên đã chịu tác động của các yếu tố ngẫu nhiên. Chọn A.
Câu 127
Thành phần kiểu gen ở thế hệ P của một quần thể thực vật tự thụ phấn là: \(0,3\frac{{{\rm{AB}}}}{{{\rm{Ab}}}}\frac{{{\rm{dE}}}}{{{\rm{dE}}}}:0,6\frac{{{\rm{Ab}}}}{{{\rm{aB}}}}\frac{{{\rm{De}}}}{{{\rm{de}}}}:0,1\frac{{{\rm{ab}}}}{{{\rm{ab}}}}\frac{{{\rm{de}}}}{{{\rm{de}}}}\). Biết không xảy ra hiện tượng hoán vị gen, theo lí thuyết các cây đồng hợp tử mang 2 tính trạng trội ở F3 chiếm tỉ lệ là bao nhiêu?
Đáp án: ……….
Thành phần kiểu gen ở thế hệ P của một quần thể thực vật tự thụ phấn là: \(0,3\frac{{{\rm{AB}}}}{{{\rm{Ab}}}}\frac{{{\rm{dE}}}}{{{\rm{dE}}}}:0,6\frac{{{\rm{Ab}}}}{{{\rm{aB}}}}\frac{{{\rm{De}}}}{{{\rm{de}}}}:0,1\frac{{{\rm{ab}}}}{{{\rm{ab}}}}\frac{{{\rm{de}}}}{{{\rm{de}}}}\). Biết không xảy ra hiện tượng hoán vị gen, theo lí thuyết các cây đồng hợp tử mang 2 tính trạng trội ở F3 chiếm tỉ lệ là bao nhiêu?
Đáp án: ……….
Lời giải
Các cây đồng hợp tử mang 2 tính trạng trội ở \({{\rm{F}}_3}\) gồm: \(\frac{{{\rm{Ab}}}}{{{\rm{Ab}}}}\frac{{{\rm{dE}}}}{{{\rm{dE}}}};\frac{{{\rm{Ab}}}}{{{\rm{Ab}}}}\frac{{{\rm{De}}}}{{{\rm{De}}}};\frac{{{\rm{aB}}}}{{{\rm{aB}}}}\frac{{{\rm{De}}}}{{{\rm{De}}}}\) chiếm tỉ lệ:
\(\begin{array}{l} = 0,3 \times \left( {\frac{{1 - \frac{1}{{{2^3}}}}}{2}\frac{{Ab}}{{Ab}}} \right) \times 1\frac{{dE}}{{dE}} + 0,6 \times \left( {\frac{{1 - \frac{1}{{{2^3}}}}}{2}\frac{{{\rm{Ab}}}}{{{\rm{Ab}}}}} \right)\left( {\frac{{1 - \frac{1}{{{2^3}}}}}{2}\frac{{{\rm{De}}}}{{{\rm{De}}}}} \right) + 0,6 \times \left( {\frac{{1 - \frac{1}{{{2^3}}}}}{2}\frac{{{\rm{aB}}}}{{{\rm{aB}}}}} \right)\left( {\frac{{1 - \frac{1}{{{2^3}}}}}{2}\frac{{{\rm{De}}}}{{{\rm{De}}}}} \right)\\ = \frac{{231}}{{640}}\end{array}\)
Đáp án: \(\frac{{231}}{{640}}.\)
Đoạn văn 1
Đọc đoạn trích sau và trả lời các câu hỏi từ 51 đến 55:
Cũng giống như nhiều đô thị trên thế giới, Thăng Long - Hà Nội luôn luôn là một điểm đến hấp dẫn của nhiều luồng di cư. Luồng thứ nhất bao gồm những thành phần tinh hoa của đất nước. Họ là những người có năng lực, học vấn và vốn liếng, được tuyển dụng hoặc tự tìm đến chốn kinh kì để phát triển và thi thố với đời. Luồng thứ hai là những người dân cùng khổ từ các vùng nông thôn, do lao dịch, thuế má, thất bát, dịch bệnh và bóc lột, bị đẩy đến tình trạng bần cùng. Họ đổ về Thăng Long tìm cơ hội thay đổi cuộc đời và tạo nên những khu cư trú tồi tàn của người lao động vùng ngoại ô. Luồng di cư thứ ba là của những người nước ngoài đủ mọi thành phần sắc tộc và chủng tộc, từ những thương nhân, nhà truyền giáo, nhà ngoại giao cho đến những người lao động nghèo hèn. Họ di chuyển vào thành phố lớn để tìm kiếm cơ hội phát triển sự nghiệp hoặc chỉ đơn giản là để tìm kế sinh nhai. Bên cạnh luồng di cư đến thành phố, cũng có luồng di cư ra khỏi thành phố dù là tự nguyện hay cưỡng bức. Đặc biệt, các cuộc chiến tranh binh lửa, xung đột và cướp bóc đẫm máu thường là nguyên nhân làm cho số lượng cư dân khu vực đô thị giảm đi nhanh chóng. Chính sách của nhà nước ở mỗi thời kì cũng khuyến khích hoặc ngăn chặn các luồng di dân vào thành phố làm cho dân số khu vực đô thị thay đổi thất thường. Tuy nhiên, hiện tượng nổi bật của các biến động dân số khu vực đô thị chính là các dòng di cư.
(Nguyễn Văn Chính, Cấu trúc và giải cấu trúc bản sắc VH HN,
Khoa Lịch sử: Một chặng đường nghiên cứu (2006 - 2011), NXB Thế giới, 2011, T163 - 192)
Câu 128
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Nội dung chính của đoạn trích là gì?
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Lời giải
Đoạn trích trên nói về hiện tượng nổi bật của các biến động dân số ở Thăng Long - Hà Nội. Chọn A.
Câu 129
Theo đoạn trích, nguyên nhân nào làm cho dân số Hà Nội có chiều hướng biến động không bình thường?
Lời giải
Câu 130
Theo đoạn trích, luồng di cư của đối tượng nào làm cho số lượng cư dân khu vực đô thị giảm đi nhanh chóng?
Lời giải
Theo đoạn trích các luồng di cư thuộc tầng lớp tinh hoa, nông thôn và lao động qua quá trình di cư đều cư trú tại Thăng Long. Người di cư ra khỏi thành phố thì không còn cư trú tại Thăng Long, làm cho số lượng cư dân khu vực đô thị giảm đi nhanh chóng. Chọn A.
Lời giải
Lời giải
Đoạn văn 2
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 56 đến 60:
Lá Diêu bông
(Hoàng Cầm)
Váy Đình Bảng buông chùng cửa vōng
Chị thẩn thơ đi tìm
Đồng chiều
Cuống rạ...
Chị bảo
– Đứa nào tìm được lá Diêu bông
Từ nay ta gọi là chồng
Hai ngày Em tìm thấy lá
Chị chau mày
– Đâu phải Lá Diêu bông
Mùa đông sau Em tìm thấy lá
Chị lắc đầu
trông nắng vãn bên sông
Ngày cưới Chị
Em tìm thấy lá
Chị cười xe chỉ ấm trôn kim
Chị ba con
Em tìm thấy lá
Xoè tay phủ mặt Chị không nhìn
Từ thuở ấy
Em cầm chiếc lá
đi đầu non cuối bể
Gió quê vi vút gọi
Diêu Bông hời!...
... ới Diêu Bông...!
(99 tình khúc, Hoàng Cầm, NXB Văn học, Hà Nội, tr. 30-31)
Lời giải
Lời giải
Lời giải
Câu 136
Biện pháp tu từ nào được sử dụng để sáng tạo nên hình ảnh in đậm trong câu thơ sau đây? “Váy Đình Bảng buông chùng cửa võng”
Lời giải
Lời giải
Đoạn văn 3
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 61 đến 65:
…Khi tàu đông anh lỡ chuyến đi dài
Chỉ một người ở lại với anh thôi
Lúc anh vắng người ấy thường thức đợi
Khi anh khổ chỉ riêng người ấy tới
Anh yên lòng bên lửa ấm yêu thương
Người ấy chỉ vui khi anh hết lo buồn
Anh lạc bước, em đưa anh trở lại
Khi mệt mỏi thấy tháng ngày cằn cỗi
Em là sớm mai là tuổi trẻ của anh
Khi những điều giả dối vây quanh
Bàn tay ấy chở che và gìn giữ
Biết ơn em, em từ miền cát gió
Về với anh, bông cúc nhỏ hoa vàng […]
(Và anh tồn tại – Lưu Quang Vũ)
Lời giải
Lời giải
Lời giải
Lời giải
Lời giải
Đoạn văn 4
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 66 đến 70:
Trong rừng ít có loại cây sinh sôi nảy nở khỏe như vậy. Cạnh một cây xà nu mới ngã gục, đã có bốn năm cây con mọc lên, ngọn xanh rờn, hình nhọn mũi tên lao thẳng lên bầu trời. Cũng có ít loại cây ham ánh sáng mặt trời đến thế. Nó phóng lên rất nhanh để tiếp lấy ánh nắng, thứ ánh nắng trong rừng rọi từ trên cao xuống từng luồng lớn thẳng tắp, lóng lánh vô số hạt bụi vàng từ nhựa cây bay ra, thơm mỡ màng. Có những cây con vừa lớn ngang tầm ngực người lại bị đại bác chặt đứt làm đôi. Ở những cây đó, nhựa còn trong, chất dầu còn loãng, vết thương không lành được, cứ loét mãi ra, năm mười hôm thì cây chết. Nhưng cũng có những cây vượt lên được cao hơn đầu người, cành lá sum sê như những con chim đã đủ lông mao, lông vũ. Đạn đại bác không giết nổi chúng, những vết thương của chúng chóng lành như trên một thân thể cường tráng. Chúng vượt lên rất nhanh, thay thế những cây đã ngã... Cứ thế, hai ba năm nay rừng xà nu ưỡn tấm ngực lớn của mình ra, che chở cho làng...
(Rừng xà nu – Nguyễn Trung Thành)
Lời giải
Câu 144
Từ “phóng lên” trong câu “Nó phóng lên rất nhanh để tiếp lấy ánh nắng, thứ ánh nắng trong rừng rọi từ trên cao xuống từng luồng lớn thẳng tắp, lóng lánh vô số hạt bụi vàng từ nhựa cây bay ra, thơm mỡ màng.” có nghĩa giống với từ nào sau đây?
Lời giải
Cây xà nu “phóng lên” có nghĩa là cây sinh sôi, phát triển, vươn lên. Chọn B.
Câu 145
Câu văn “Cạnh một cây xà nu mới ngã gục, đã có bốn năm cây con mọc lên, ngọn xanh rờn, hình nhọn mũi tên lao thẳng lên bầu trời.” có ý nghĩa gì?
Lời giải
Lời giải
Câu 147
Đoạn trích thể hiện tài năng viết truyện ngắn của Nguyễn Trung Thành ở phương diện nổi bật nào?
Lời giải
Đoạn văn 5
Dựa vào các thông tin sau đây để trả lời các câu hỏi từ câu 108 đến câu 110:
"Nước Việt Nam Dân chủ Cộng hoà vừa ra đời đã phải đối mặt với muôn vàn khó khăn, thử thách. Quân đội các nước Đông minh dưới danh nghĩa giải giáp quân Nhật đã lũ lượt kéo vào nước ta Từ vĩ tuyến 16 trở ra Bắc, gần 20 vạn quân Trung Hoa Dân quốc kéo vào đóng Hà Nội và hầu hết các tỉnh.
Theo sau chúng là tay sai thuộc các tổ chức phản động như Việt Nam Quốc dân đảng (Việt Quốc), Việt Nam Cách mạng đồng minh hội (Việt Cách) về nước hòng cướp chính quyền của ta Từ vĩ tuyến 16 trở vào Nam, quân Anh tạo điều kiện cho Pháp quay trở lại xâm lược Lợi dụng tình hình đó, bọn phản động trong nước ngóc đầu dậy, làm tay sai cho Pháp chống phá cách mạng.
Trong khi đó, chính quyền cách mạng vừa mới thành lập, chưa được củng cố, lực lượng vũ trang còn non yếu.
Nền kinh tế nông nghiệp nước ta vốn lạc hậu, lại bị chiến tranh tàn phá nặng nề; hậu quả của nạn đói cuối năm 1944-đầu năm 1945 chưa khắc phục được Tiếp đó là nạn lụt lớn, làm vỡ đê ở chín tỉnh Bắc Bộ, rồi hạn hán kéo dài, khiến cho nửa tống số trong đất không canh tác được Nhiều xí nghiệp còn nằm trong tay tư bản Pháp. Các cơ sở công nghiệp của ta chưa kịp phục hồi sản xuất. Hàng hóa khan hiếm, giá cả tăng vọt, đời sống nhân dân gặp nhiều khó khăn. Ngân sách Nhà nước lúc này hầu như trống rổng, kho bạc Nhà nước chỉ có hơn 1,2 triệu đồng. Chính quyền cách mạng chưa quản lí được Ngân hàng Đông Dương. Trong lúc đó, quân Trung Hoa Dân quốc tung ra thị trường tiền Trung Quốc đã mất giá, làm cho nền tài chính nước ta thêm rối loạn.
Tàn dư văn hoá lạc hậu của chế độ thực dân, phong kiến để lại hết sức nặng nề, hơn 90\% dân số không biết chữ.
Đất nước đứng trước tình thế "ngàn cân treo sợi tóc". Tuy nhiên, thuận lợi của chúng ta lúc bấy giờ là rất cơ bản. Nhân dân ta đã giành quyền làm chủ, Bước đầu được hưởng quyền lợi do chính quyền cách mạng đưa lại nên rất phấn khởi, gắn bó với chế độ. Cách mạng nước ta có Đảng, đứng đầu là Chủ tịch Hồ Chí Minh sáng suốt lãnh đạo. Trên thế giới, hệ thống xã hội chủ nghĩa đang hình thành, phong trào giải phóng dân tộc dâng cao ở nhiều nước thuộc địa và phụ thuộc, phong trào đấu tranh vì hoà bình, dân chủ phát triển ở nhiều nước tư bản.
(Nguồn: SGK Lịch sử 12, NXB Giáo dục Việt Nam, 2023, trang 121-122).
Câu 148
Việt Nam Quốc dân đảng (Việt quốc) và Việt Nam Cách mạng đồng minh hội (Việt cách) là tay sai của thế lực ngoại xâm nào sau đây?
Lời giải
Câu 149
Nội dung nào sau đây phản ánh đúng và đầy đủ bức tranh toàn cảnh của nước Việt Nam Dân chủ Cộng hòa thời gian đầu sau Cách mạng tháng Tám năm 1945? .
Lời giải
Câu 150
Kẻ thù nguy hiếm nhất của nước Việt Nam Dân chủ Cộng hòa trong năm đầu sau ngày Cách mạng tháng Tám (1945) thành công là
Lời giải
244 Đánh giá
50%
40%
0%
0%
0%