ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Ứng dụng tích phân để tính thể tích
369 người thi tuần này 4.6 1.8 K lượt thi 20 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ điểm đến mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về mối quan hệ giữa hai đường thẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách giữa hai đường thẳng chéo nhau
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa hai mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Diện tích hình trụ, thể tích khối trụ
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[V = \pi \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx\]
B. \[V = \mathop \smallint \limits_a^b \left| {f\left( x \right)} \right|dx\]
C. \[V = \pi \mathop \smallint \limits_a^b {f^2}\left( x \right)dx\]
D. \[V = {\pi ^2}\mathop \smallint \limits_a^b {f^2}\left( x \right)dx\]
Lời giải
Thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi đồ thị hàm số\[y = f\left( x \right)\] trục Ox và hai đường thẳng\[x = a,x = b(a < b)\] quanh trục Ox là: \[V = \pi \mathop \smallint \limits_a^b {f^2}\left( x \right)dx\]
Đáp án cần chọn là: C
>Câu 2
A.\[V = {\pi ^2}\mathop \smallint \limits_0^1 {x^3}dx\]
B. \[V = \pi \mathop \smallint \limits_0^1 {x^3}dx\]
C. \[V = \pi \mathop \smallint \limits_0^1 {x^6}dx\]
D. \[V = \pi \mathop \smallint \limits_0^1 {x^5}dx\]
Lời giải
Đáp án cần chọn là: C
Câu 3
A.\[V = {\pi ^2}\mathop \smallint \limits_0^1 {x^4}dx\]
B. \[V = \pi \mathop \smallint \limits_0^1 {y^2}dy\]
C. \[V = \pi \mathop \smallint \limits_0^1 {y^4}dy\]
D. \[V = \pi \mathop \smallint \limits_0^1 - {y^4}dy\]
Lời giải
Ta có:\[{y^2} + x = 0 \Leftrightarrow x = - {y^2}\]
Vậy thể tích khối tròn xoay đó là:\[V = \pi \mathop \smallint \limits_a^b {f^2}\left( y \right)dy = \pi \mathop \smallint \limits_0^1 {\left( { - {y^2}} \right)^2}dy = \pi \mathop \smallint \limits_0^1 {y^4}dy\]
Đáp án cần chọn là: C
Câu 4
A.\[\frac{{81\pi }}{{35}}\]
B. \[\frac{{53\pi }}{6}\]
C. \[\frac{{81}}{{35}}\]
D. \[\frac{{21\pi }}{5}\]
Lời giải
Ta có\(\frac{1}{3}x3 - x2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 3}\end{array}} \right.\)
\[V = \pi \mathop \smallint \limits_0^3 {\left( {\frac{1}{3}{x^3} - {x^2}} \right)^2}d{\rm{x\;}} = \pi \mathop \smallint \limits_0^3 \left( {\frac{1}{9}{x^6} - \frac{2}{3}{x^5} + {x^4}} \right)dx\]
\( = \pi \left( {\frac{1}{{63}}{x^7} - \frac{1}{9}{x^6} + \frac{1}{5}{x^5}} \right)\left| {_0^3} \right. = \frac{{81}}{{35}}\pi \)
Đáp án cần chọn là: A
Câu 5
A.\[V = 4 - 2e\]
B. \[V = \left( {4 - 2e} \right)\pi \]
C. \[V = {e^2} - 5\]
D. \[V = \left( {{e^2} - 5} \right)\pi \]
Lời giải
Xét giao điểm\[2\left( {x - 1} \right){e^x} = 0 \Leftrightarrow x = 1\]
Thể tích cần tính: \[V = \pi \mathop \smallint \limits_0^1 {\left[ {2\left( {x - 1} \right){e^x}} \right]^2}dx = 4\pi \mathop \smallint \limits_0^1 {\left( {x - 1} \right)^2}{e^{2x}}dx = \pi \left( {{e^2} - 5} \right)\]
(dùng máy tính thử)
Đáp án cần chọn là: D
Câu 6
A.\[\frac{2}{5}\pi \]
B. \(\pi \)
C. \[\frac{1}{2}\pi \]
D. \[\frac{8}{{15}}\pi \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[a = 2\sqrt 2 \]
B. \[a = \frac{5}{2}\]
C. \[a = 2\]
D. \[a = 3\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[V = \pi \mathop \smallint \limits_a^b \left( {f_1^2(x) - f_2^2(x)} \right)dx\]
B. \[V = \pi \mathop \smallint \limits_a^b \left( {{f_1}(x) - {f_2}(x)} \right)dx\]
C. \[V = \mathop \smallint \limits_a^b \left( {f_1^2(x) - f_2^2(x)} \right)dx\]
D. \[V = \pi \mathop \smallint \limits_a^b {\left( {{f_1}(x) - {f_2}(x)} \right)^2}dx\]Trả lời:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.\[V = \pi \mathop \smallint \limits_0^2 (2 - x)dx + \pi \mathop \smallint \limits_0^2 {x^2}dx\]
B. \[V = \pi \mathop \smallint \limits_0^2 (2 - x)dx\]
C. \[V = \pi \mathop \smallint \limits_0^1 xdx + \pi \mathop \smallint \limits_1^2 \sqrt {2 - x} dx\]
D. \[V = \pi \mathop \smallint \limits_0^1 {x^2}dx + \pi \mathop \smallint \limits_1^2 (2 - x)dx\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.\[V = \mathop \smallint \limits_a^b S\left( x \right)dx\]
B. \[V = \pi \mathop \smallint \limits_a^b S\left( x \right)dx\]
C. \[V = \mathop \smallint \limits_a^b {S^2}\left( x \right)dx\]
D. \[V = \pi \mathop \smallint \limits_a^b {S^2}\left( x \right)dx\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A.\[V = \mathop \smallint \limits_{ - 2}^0 4{x^4}dx\]
B. \[V = \mathop \smallint \limits_0^{ - 2} 2{x^2}dx\]
C. \[V = \mathop \smallint \limits_{ - 2}^0 2{x^2}dx\]
D. \[V = \pi \mathop \smallint \limits_{ - 2}^0 4{x^4}dx\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A.\[V = 32 + 2\sqrt {15} \]
B. \[V = \frac{{124\pi }}{3}\]
C. \[V = \frac{{124}}{3}\]
D. \[V = (32 + 2\sqrt {15} )\pi \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.\[V = 3.\]
B. \[V = \frac{\pi }{3}.\]
C. \[V = \pi .\]
D. \[V = 3\pi .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A.\[a \in \left( {\frac{1}{2};1} \right).\]
B.\[a \in \left( {1;\frac{3}{2}} \right).\]
C. \[a \in \left( {\frac{3}{2};2} \right).\]
D. \[a \in \left( {2;\frac{5}{2}} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
A.\[V = \frac{7}{3}\pi .\]
B. \[V = \frac{8}{3}\pi .\]
C. \[V = \frac{{10}}{3}\pi .\]
D. \[V = \frac{{16}}{3}\pi .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
A.\[V = 36\pi .\]
B. \[V = 24\pi .\]
C. \[V = 16\pi .\]
D. \[V = 64\pi .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
A.\[V = 6{\pi ^2}.\]
B. \[V = 4{\pi ^2}.\]
C. \[V = 2{\pi ^2}.\]
D. \[V = 8{\pi ^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 20
A.\[\frac{4}{3}\]
B. \[\frac{{2\sqrt 3 }}{3}\]
C. \[\frac{2}{3}\]
D. \[\frac{{\sqrt 6 }}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hai hàm số y = f 1 ( x ) và y = f 2 ( x )  liên tục trên đoạn  [ a ; b ] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ? y = f 1 ( x ) và y = f 2 ( x )  liên tục trên đoạn  [ a ; b ] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ?  (ảnh 1)](https://video.vietjack.com/upload2/images/1656411446/1656411669-image2.png)
