Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
708 lượt thi 19 câu hỏi 30 phút
2041 lượt thi
Thi ngay
1067 lượt thi
999 lượt thi
1024 lượt thi
962 lượt thi
1245 lượt thi
863 lượt thi
1086 lượt thi
881 lượt thi
906 lượt thi
Câu 1:
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
A.2.
B.3.
C.1.
D.Vô số
Câu 2:
Trong các mệnh đề sau, mệnh đề nào đúng?
A.Cho hai đường thẳng song song a và b và đường thẳng c sao cho \[c \bot a,\;\,c \bot b\]. Mọi mặt phẳng \[\left( \alpha \right)\] chứa c thì đều vuông góc với mặt phẳng (a,b).
B.Cho \[a \bot (\alpha ),\] mọi mặt phẳng \[\left( \beta \right)\;\]chứa a thì \[\left( \beta \right) \bot (\alpha ).\]
C.Cho \[a \bot b\], mọi mặt phẳng chứa b đều vuông góc với a.
D.Cho \[a \bot b\], nếu \[a \subset \left( \alpha \right)\] và\[b \subset \left( \beta \right)\] thì \[\left( \alpha \right) \bot (\beta ).\]
Câu 3:
A.Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
B.Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.
C.Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
D.Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước
Câu 4:
Cho tứ diện ABCD có AB,AC,AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau:
A. Ba mặt phẳng (ABC),(ABD),(ACD) đôi một vuông góc.
B.Hình chiếu của A lên mặt phẳng (BCD) là trực tâm của tam giác BCD.
C.Tam giác BCD vuông.
D. Hai cạnh đối của tứ diện vuông góc.
Câu 5:
Cho hình hộp đứng ABCD.A′B′C′D′ . Xét tất cả các hình bình hành có đỉnh là đỉnh của hình hộp đó. Hỏi có bao nhiêu hình bình hành mà mặt phẳng chứa nó vuông góc với mặt phẳng đáy (ABCD) ?
A.4
B.6
C.8
D.10
Câu 6:
Cho hình chóp S.ABC có \[SA \bot (ABC),\;\] tam giác ABC vuông tại B, kết luận nào sau đây sai?
A.\[\left( {SAC} \right) \bot \left( {SAB} \right)\]
B. \[\left( {SAB} \right) \bot \left( {ABC} \right)\]
C. \[\left( {SAC} \right) \bot \left( {ABC} \right)\]
D. \[\left( {SAB} \right) \bot \left( {SBC} \right)\]
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
A.\[BM \bot AC.\]
B. \[\left( {SBM} \right) \bot \left( {SAC} \right).\]
C. \[\left( {SAB} \right) \bot \left( {SBC} \right).\]
D. \[\left( {SAB} \right) \bot \left( {SAC} \right).\]
Câu 8:
Cho tứ diện SABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?
A.\[SH \bot AB.\]
B.\[HI \bot AB.\]
C. \[\left( {SAB} \right) \bot \left( {SAC} \right).\]
D. \[\left( {SHI} \right) \bot \left( {SAB} \right).\]
Câu 9:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I):\[AI \bot SC\]
\[(II):(SBC) \bot (SAC)\]
\[\;(III):AI \bot BC\]
\[(IV):(ABI) \bot (SBC)\]
A.1
B.2
C.3
D.4
Câu 10:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại BB, SA vuông góc với đáy. Gọi H,K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
A.\[BC \bot AH.\]
B. \[\left( {AHK} \right) \bot \left( {SBC} \right).\]
C. \[SC \bot AI.\]
D. Tam giác IAC đều
Câu 11:
Cho tam giác đều ABC cạnh a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho \(SD = \frac{{a\sqrt 6 }}{2}\). Gọi I là trung điểm BC; kẻ IH vuông góc SA \[(H \in SA).\]Khẳng định nào sau đây sai?
A.\[SA \bot BH.\]
B. \[\left( {SDB} \right) \bot \left( {SDC} \right).\]
D. \[BH \bot HC.\]
Câu 12:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy lớn AB; cạnh bên SA vuông góc với đáy. Gọi Q là điểm trên cạnh SA và \[Q \ne A,\;Q \ne S\]; M là điểm trên đoạn AD và \[M \ne A\]. Mặt phẳng (α) qua QM và vuông góc với mặt phẳng (SAD). Thiết diện tạo bởi \[\left( \alpha \right)\;\]với hình chóp đã cho là:
A.tam giác.
B.hình thang cân.
C.hình thang vuông
D.hình bình hành
Câu 13:
Cho hình chóp đều S.ABC. Mặt phẳng (α) qua A, song song với BC và vuông góc với mặt phẳng (SBC). Thiết diện tạo bởi (α) với hình chóp đã cho là:
A.tam giác đều
B.tam giác cân
C.tam giác vuông
D.tứ giác
Câu 14:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB=2a,AD=DC=a; cạnh bên SA=a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích S của thiết diện tạo bởi (α) với hình chóp đã cho.
A.\[S = \frac{{{a^2}}}{2}.\]
B. \[S = \frac{{{a^2}\sqrt 2 }}{2}.\]
C. \[S = \frac{{{a^2}\sqrt 3 }}{2}.\]
D. \[S = \frac{{{a^2}}}{4}.\]
Câu 15:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng \({30^0}\). Tính diện tích hình chữ nhật ABCD..
A.\[{S_{ABCD}} = {a^2}.\]
B. \[{S_{ABCD}} = \sqrt 2 \,{a^2}.\]
C. \[{S_{ABCD}} = \sqrt 3 \,{a^2}.\]
D. \[{S_{ABCD}} = 2\,{a^2}.\]
Câu 16:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,AB=a.. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với mặt phẳng (SAC) góc 300. Tính diện tích tam giác ABC.
A.\[{S_{{\rm{\Delta }}{\kern 1pt} ABC}} = \frac{{{a^2}\sqrt 2 }}{2}.\]
B. \[{S_{{\rm{\Delta }}{\kern 1pt} ABC}} = {a^2}\sqrt 2 .\]
C. \[{S_{{\rm{\Delta }}{\kern 1pt} ABC}} = \frac{{{a^2}\sqrt 2 }}{4}.\]
D. \[{S_{{\rm{\Delta }}{\kern 1pt} ABC}} = \frac{{{a^2}\sqrt 2 }}{6}.\]
Câu 17:
Trong không gian cho điểm A và mặt phẳng (P). Mệnh đề nào đưới đây đúng ?
A.Có đúng một mặt phẳng đi qua A và vuông góc với (P).
B.Có đúng hai mặt phẳng đi qua A và vuông góc với (P).
C.Có vô số mặt phẳng đi qua A và vuông góc với (P).
D.Không tồn tại mặt phẳng đi qua A và vuông góc với (P).
Câu 18:
Hình lăng trụ đứng có đáy là hình chữ nhật có bao nhiêu mặt là hình chữ nhật ?
B.5
C.6
D.3
Câu 19:
Cho hình lăng trụ tam giác đều ABC.A’B’C’, gọi G là trọng tâm tam giác ABC. (tham khảo hình vẽ). Khẳng định nào sau đây là sai?
A.\[AG \bot B'C'\]
B. \[{\rm{AG}} \bot \left( {BCC'B'} \right)\]
C. \[{\rm{A}}{{\rm{A}}^\prime } \bot \left( {ABC} \right)\]
D. \[A'G \bot \left( {ABC} \right)\]
142 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com