Sử dụng phương pháp tích phân từng phần để tính tích phân

612 lượt thi 28 câu hỏi 30 phút

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì 

Xem đáp án

Câu 2:

Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt

Xem đáp án

Câu 8:

Tích phân:  \[I = \mathop \smallint \limits_1^e 2x(1 - \ln x)\,dx\] bằng

Xem đáp án

Câu 9:

Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]

Xem đáp án

Câu 10:

Tính tích phân \[I = \mathop \smallint \limits_1^{{2^{1000}}} \frac{{\ln x}}{{{{(x + 1)}^2}}}dx\]

Xem đáp án

Câu 13:

Cho hàm số y=f(x)thỏa mãn hệ thức \[ \Rightarrow \smallint f(x)\sin {\rm{x}}dx = - f(x).\cos x + \smallint {\pi ^x}.\cos xdx\]. Hỏi y=f(x) là hàm số nào trong các hàm số sau: 

Xem đáp án

4.6

122 Đánh giá

50%

40%

0%

0%

0%