Các bài toán về mặt phẳng và mặt cầu

  • 479 lượt thi

  • 21 câu hỏi

  • 30 phút

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α)  có phương trình 2x−2y−z+3=0. Bán kính của (S) là:

Xem đáp án

Vì (S) tiếp xúc với mặt phẳng \[(\alpha )\]nên ta có \[R = d(I,\alpha )\]

Suy ra\[R = d(I,\alpha ) = \frac{{\left| {2.2 - 2.1 - ( - 1) + 3} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{6}{3} = 2\]

Đáp án cần chọn là: A


Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

Xem đáp án

Ta có\[\overrightarrow {AI} = \left( {1;1; - 3} \right)\]

Vì (P) tiếp xúc với (S) tại A.

\[ \Leftrightarrow IA \bot (P) \Rightarrow \overrightarrow {IA} = \overrightarrow {{n_P}} \]

Do đó, phương trình mặt phẳng (P) có dạng\[x + y - 3z + d = 0\left( * \right)\]

Mặt khác, vì \[A \in (P)\] nên ta có\[2 + 1 - 3.2 + d = 0 \Leftrightarrow d = 3\]

Vậy ta có\[(P):x + y - 3z + 3 = 0\]

Đáp án cần chọn là: D


Câu 3:

Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:

Xem đáp án

(S) có tâm\[I(1; - 1; - 2);R = 2\]

Vì (P) song song với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\] có vtcp tương ứng là\[\overrightarrow {{u_1}} = \left( {2; - 1;1} \right);\overrightarrow {{u_2}} = \left( { - 1;1; - 1} \right)\]

 ta có \[\overrightarrow {{n_P}} = [\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = (0;1;1)\]

Gọi\[(P):y + z + d = 0\]

\[d(I;P) = \frac{{| - 1 - 2 + d|}}{{\sqrt 2 }} = \frac{{|d - 3|}}{{\sqrt 2 }}\]

\(\begin{array}{l} \Rightarrow \frac{{|d - 3|}}{{\sqrt 2 }} = 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d - 3 = 2\sqrt 2 }\\{d - 3 = - 2\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d = 3 + 2\sqrt 2 }\\{d = 3 - 2\sqrt 2 }\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y + z + 3 + 2\sqrt 2 = 0}\\{y + z + 3 - 2\sqrt 2 = 0}\end{array}} \right.\end{array}\)

Đáp án cần chọn là: D


Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

Xem đáp án

\[(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]có tâm I(1;−2;1) và bán kính R=3.

Do (P) đi qua A,B và cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất nên (P) đi qua tâm I của (S)

Ta có:\[\overrightarrow {IA} = \left( { - 1;1; - 1} \right),\overrightarrow {IB} = \left( {0;3; - 2} \right);\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {IA} ,\overrightarrow {IB} } \right] = \left( {1; - 2; - 3} \right)\]

Phương trình mặt phẳng\[(P):1(x--0)--2(y + 1)--3(z--0) = 0\]hay\[x--2y--3z--2 = 0\]

Đáp án cần chọn là: B


Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10\] và mặt phẳng \[(P): - 2x + y + \sqrt 5 z + 9 = 0\;\]. Gọi (Q) là tiếp diện của (S) tại M(5;0;4) . Tính góc giữa (P) và (Q).

Xem đáp án

Gọi mặt cầu tâm I(2;−1;4).

Mặt phẳng tiếp diện của mặt cầu (S) (tâm I, bán kính R) tại điểm M chính là mặt phẳng đi qua điểm M và vuông góc với bán kính IM tại tiếp điểm M

Mặt phẳng qua M(5;0;4) vuông góc với\[IM\left( {\overrightarrow {IM} = (3;1;0)} \right)\]có phương trình:

\[(Q):3\left( {x - 5} \right) + {\rm{\;}}y\; = 0 \Leftrightarrow 3x + y - 15 = 0\]

Có:\[{\vec n_P}( - 2;1;\sqrt 5 );{\vec n_Q}(3;1;0)\]

Nên ta có: 

\[\cos \widehat {\left( {(P);(Q)} \right)} = \left| {\cos \widehat {\left( {\overrightarrow {{n_P}} ;\overrightarrow {{n_Q}} } \right)}} \right| = \frac{{\left| { - 6 + 1} \right|}}{{\sqrt {10} .\sqrt {10} }} = \frac{1}{2} \Rightarrow \widehat {\left( {(P);(Q)} \right)} = {60^0}\]

Đáp án cần chọn là: B


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận