Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
633 lượt thi 20 câu hỏi 30 phút
2041 lượt thi
Thi ngay
1067 lượt thi
999 lượt thi
1024 lượt thi
962 lượt thi
1245 lượt thi
863 lượt thi
1086 lượt thi
881 lượt thi
906 lượt thi
Câu 1:
Phương trình tham số của đường thẳng đi qua điểm \[M\left( {{x_0};{y_0};{z_0}} \right)\] và có VTCP \[\overrightarrow u = \left( {a;b;c} \right)\;\]là:
A.\(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)
B. \(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)
C. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)
D. \(d:\left\{ {\begin{array}{*{20}{c}}{x = a + {x_0}t}\\{y = b + {y_0}t}\\{z = c + {z_0}t}\end{array}} \right.\left( {t \in \mathbb{Z}} \right)\)
Câu 2:
Đường thẳng \[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\] có một VTCP là:
A.\[\left( {a;b;c} \right)\]
B. \[\left( {a;b;c} \right)\]
C. \[\left( {{x_0};{y_0};{z_0}} \right)\]
D. \[\left( { - {x_0}; - {y_0}; - {z_0}} \right)\]
Câu 3:
Đường thẳng đi qua điểm \[\left( { - {x_0}; - {y_0}; - {z_0}} \right)\] và có VTCP (−a;−b;−c) có phương trình:
A.\[\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\]
B. \[\frac{{x - {x_0}}}{{ - a}} = \frac{{y - {y_0}}}{{ - b}} = \frac{{z - {z_0}}}{{ - c}}\]
C. \[\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}\]
D. \[\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{{ - b}} = \frac{{z + {z_0}}}{c}\]
Câu 4:
Cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\). Điểm nào trong các điểm dưới đây thuộc đường thẳng d?
A.(−1;−1;1)
B.(−1;1;1)
C.(0;1;1)
D.(0;1;0)
Câu 5:
Điểm nào sau đây nằm trên đường thẳng \[\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 2}} = \frac{z}{1}\]?
A.(0;1;2)
B.(1;0;1)
C.(2;−2;1)
D.(3;−4;1)
Câu 6:
Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\] và các điểm A(1;1;−1),B(−1;−1;1),\(C\left( {2;\frac{1}{2};0} \right)\). Chọn mệnh đề đúng:
A.A và B đều thuộc d
B.B và C đều thuộc d
C.A và C đều thuộc d
D.chỉ có A thuộc d
Câu 7:
Trong không gian Oxyz, cho đường thẳng (d) đi qua \[{M_0}\left( {{x_0},{y_0},{z_0}} \right)\;\;\]và nhận \[\overrightarrow u = \left( {a,b,c} \right),\;\;{a^2} + {b^2} + {c^2} > 0\;\]làm một vecto chỉ phương. Hãy chọn khẳng định sai trong bốn khẳng định sau?
A.Phương trình chính tắc của \[(d):\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\]
B.Phương trình tham số của \(d:\left\{ {\begin{array}{*{20}{c}}{x = {x_0} + at}\\{y = {y_0} + bt}\\{z = {z_0} + ct}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\)
C.Nếu \[k \ne 0\;\] thì \[\vec v = k.\vec u\]là một vecto chỉ phương của đường thẳng (d).
D.Phương trình chính tắc của\[(d):\frac{{x + {x_0}}}{a} = \frac{{y + {y_0}}}{b} = \frac{{z + {z_0}}}{c}\]
Câu 8:
Trong không gian Oxyz, tìm phương trình tham số trục Oz?
A.\(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 0}\\{z = 0}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = t}\\{z = 0}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\\{z = t}\end{array}} \right.\)
Câu 9:
Trong không gian Oxyz, điểm nào sau đây thuộc trục Oy?
A.M(0,0,3)
B.N(0,1,0)
C.P(−2,0,0)
D.Q(1,0,1)
Câu 10:
Trong không gian với hệ tọa độ Oxyz, phương trình tham số của đường thẳng \[{\rm{\Delta }}:\frac{{x - 4}}{1} = \frac{{y + 3}}{2} = \frac{{z - 2}}{{ - 1}}\] là:
A.\(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 - 4t}\\{y = 2 + 3t}\\{z = - 1 - 2t}\end{array}} \right.\)
B. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = - 4 + t}\\{y = 3 + 2t}\\{z = - 2 - t}\end{array}} \right.\)
C. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 4 + t}\\{y = - 3 + 2t}\\{z = 2 - t}\end{array}} \right.\)
D. \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 4t}\\{y = 2 - 3t}\\{z = - 1 + 2t}\end{array}} \right.\)
Câu 11:
Trong không gian với hệ trục Oxyz, cho đường thẳng dd đi qua điểm M(2,0,−1) và có vecto chỉ phương \[\overrightarrow a = \left( {4, - 6,2} \right).\]Phương trình tham số của đường thẳng d là:
A. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 3t}\\{z = - 1 + t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 2t}\\{y = - 3t}\\{z = 1 + t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + 4t}\\{y = - 6t}\\{z = 1 + 2t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 4 + 2t}\\{y = - 3t}\\{z = 2 + t}\end{array}} \right.\)
Câu 12:
Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1,2,−3) và B(3,−1,1)?
A.\[\frac{{x + 1}}{2} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 3}}{4}\]
B. \[\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 3}}{1}\]
C. \[\frac{{x - 3}}{1} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 3}}\]
D. \[\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{4}\]
Câu 13:
Trong không gian Oxyz, cho tam giác OAB với A(1;1;2),B(3;−3;0). Phương trình đường trung tuyến OI của tam giác OAB là
A.\[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\]
B. \[\frac{x}{2} = \frac{y}{1} = \frac{z}{1}\]
C. \[\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{{ - 1}}\]
D. \[\frac{x}{{ - 2}} = \frac{y}{1} = \frac{z}{1}\]
Câu 14:
Trong không gian Oxyz, cho hình bình hành ABCD với A(0,1,1), B(−2,3,1) và C(4,−3,1). Phương trình nào không phải là phương trình tham số của đường chéo BD.
A.\(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 - t}\\{z = 1}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = - 1 + 2t}\\{z = 1}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 2 + t}\\{y = 3 + t}\\{z = 1}\end{array}} \right.\)
Câu 15:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2,1,3) và đường thẳng \(d':\frac{{x - 1}}{3} = \frac{{y - 2}}{1} = \frac{z}{1}\). Gọi d là đường thẳng đi qua A và song song d′. Phương trình nào sau đây không phải là phương trình đường thẳng d?
A. \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 3t}\\{y = 1 + t}\\{z = 3 + t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 3t}\\{y = t}\\{z = 2 + t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 5 - 3t}\\{y = 2 - t}\\{z = 4 - t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 4 + 3t}\\{y = - 1 + t}\\{z = 2 + t}\end{array}} \right.\)
Câu 16:
Phương trình đường thẳng d đi qua điểm A(1;2;−3) và song song với trục OzOz là:
A. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2}\\{z = - 3}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 2}\\{z = 3 + t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + t}\\{y = 2 + t}\\{z = - 3}\end{array}} \right.\)
Câu 17:
Phương trình đường thẳng đi qua điểm A(1,2,3) và vuông góc với 2 đường thẳng cho trước: \[{d_1}:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\;\] và \[{d_2}:\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\] là:
A.\[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{{ - 1}}\]
B. \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{7} = \frac{{z - 3}}{1}\]
C. \[d:\frac{{x - 1}}{{ - 4}} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}\]
D. \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{{ - 7}} = \frac{{z - 3}}{1}\]
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2,0,0),B(0,3,0),C(0,0,−4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:
A.\(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = - 4t}\\{z = - 3t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 2 + 4t}\\{z = - 3t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = - 3t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = 6t}\\{y = 4t}\\{z = 1 - 3t}\end{array}} \right.\)
Câu 19:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 2 + \left( {{m^2} - 2m} \right)t}\\{y = 5 - \left( {m - 4} \right)t}\\{z = 7 - 2\sqrt 2 }\end{array}} \right.\)
và điểm A(1;2;3). Gọi S là tập các giá trị thực của tham số m để khoảng cách từ A đến đường thẳng Δ có giá trị nhỏ nhất. Tổng các phần tử của S là
A.\[\frac{5}{6}\]
B. \[\frac{5}{3}\]
C. \[\frac{7}{3}\]
D. \[\frac{3}{5}\]
Câu 20:
Trong không gian Oxyz, cho đường thẳng \[d:\frac{{x - 3}}{1} = \frac{{y - 4}}{1} = \frac{{z - 5}}{{ - 2}}\;\] và các điểm \[A(3 + m;4 + m;5 - 2m),\;B\left( {4 - n;5 - n;3 + 2n} \right)\] với m,n là các số thực. Khẳng định nào sau đây đúng?
A.\[A \notin d,\,\,B \in d\]
B. \[A \in d,\,\,B \in d\]
C. \[A \in d,\,\,B \notin d\]
D. \[A \notin d,\,\,B \notin d\]
127 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com