ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình

68 người thi tuần này 4.6 1.1 K lượt thi 42 câu hỏi 45 phút

🔥 Đề thi HOT:

1736 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

5.3 K lượt thi 235 câu hỏi
1183 người thi tuần này

Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)

9.7 K lượt thi 150 câu hỏi
568 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai

10.9 K lượt thi 50 câu hỏi
315 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)

1.1 K lượt thi 235 câu hỏi
210 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)

812 lượt thi 236 câu hỏi
207 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)

1.2 K lượt thi 150 câu hỏi
178 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)

655 lượt thi 235 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Tập nghiệm SS của bất phương trình \[5x - 1 \ge \frac{{2x}}{5} + 3\]là:

Xem đáp án

Câu 4:

Tập nghiệm của bất phương trình: \[ - {x^2} + 6x + 7\; \ge 0\;\] là:

Xem đáp án

Câu 5:

Giải bất phương trình \[ - 2{x^2} + 3x - 7 \ge 0.\].

Xem đáp án

Câu 6:

Cho bất phương trình \[{x^2} - 8x + 7 \ge 0\]. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

Xem đáp án

Câu 7:

Giải bất phương trình \[x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right)\] ta được nghiệm:

Xem đáp án

Câu 8:

Cặp bất phương trình nào sau đây là tương đương?

Xem đáp án

Câu 9:

Xác định m để với mọi x ta có \[ - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\]

Xem đáp án

Câu 10:

Bất phương trình x13x+25<0 có nghiệm là

Xem đáp án

Câu 11:

Bất phương trình \[\sqrt { - {x^2} + 6x - 5} >8 - 2x\]có nghiệm là:

Xem đáp án

Câu 12:

Tập nghiệm SS của bất phương trình \[\frac{{ - \,2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} \le - 1\]là

Xem đáp án

Câu 18:

Xác định m để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn –1.

Xem đáp án

Câu 19:

Để phương trình sau có 4 nghiệm phân biệt: \[\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\] thì giá trị của tham số a là:

Xem đáp án

Câu 21:

Để phương trình: \[\left| {x + 3} \right|(x - 2) + m - 1 = 0\] có đúng một nghiệm, các giá trị của tham số m là:

Xem đáp án

Câu 22:

Bất phương trình  \[\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \] có nghiệm là

Xem đáp án

Câu 23:

Tập nghiệm của bất phương trình \[\left| {x - 3} \right| >- 1\]là

Xem đáp án

Câu 24:

Tìm m để bất phương trình có nghiệm .

Xem đáp án

Câu 26:

Tập nghiệm của bất phương trình \[\left( {\sqrt {2x + 4} - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1} + \sqrt {x + 4} } \right) \le x + 3\] là tập con của tập hợp nào sau đây?

Xem đáp án

Câu 27:

Cho biểu thức \[f\left( x \right) = \left( {x + 5} \right)\left( {3 - x} \right).\]Tập hợp tất cả các giá trị của x thỏa mãn bất phương trình f(x) ≤ 0  là

Xem đáp án

Câu 28:

Bất phương trình : \[\left| {3x - 3} \right| \le \left| {2x + 1} \right|\] có nghiệm là

Xem đáp án

Câu 29:

 

Cho biểu thức \[f\left( x \right) = \frac{1}{{3x - 6}}.\] Tập hợp tất cả các giá trị của x để f(x) ≤ 0 là

Xem đáp án

Câu 30:

Cho biểu thức \[f\left( x \right) = \frac{{\left( {x + 3} \right)\left( {2 - x} \right)}}{{x - 1}}.\]. Tập hợp tất cả các giá trị của xx thỏa mãn bất phương trình f(x) >0 là

Xem đáp án

Câu 32:

Tập nghiệm của bất phương trình \[2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right) >0\]là

Xem đáp án

Câu 34:

Tập nghiệm của bất phương trình \[\frac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1\] là

Xem đáp án

Câu 35:

Bất phương trình \[\frac{4}{{x - 1}} - \frac{2}{{x + 1}} < 0\]có tập nghiệm là

Xem đáp án

Câu 36:

Nghiệm của bất phương trình \[\left| {2x - 3} \right| \le 1\]là

Xem đáp án

Câu 41:

Bất phương trình \[\left| {x + 2} \right| - \left| {x - 1} \right| < x - \frac{3}{2}\]có tập nghiệm là

Xem đáp án

4.6

212 Đánh giá

50%

40%

0%

0%

0%