ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách và góc

39 người thi tuần này 5.0 1.2 K lượt thi 28 câu hỏi 30 phút

🔥 Đề thi HOT:

2163 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

7.7 K lượt thi 235 câu hỏi
1387 người thi tuần này

Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)

11.2 K lượt thi 150 câu hỏi
675 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai

11.7 K lượt thi 50 câu hỏi
408 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)

1.5 K lượt thi 235 câu hỏi
356 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)

1.7 K lượt thi 150 câu hỏi
262 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)

1 K lượt thi 235 câu hỏi
221 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)

1 K lượt thi 236 câu hỏi

Đề thi liên quan:

Danh sách câu hỏi:

Câu 4:

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0;y0) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:

Xem đáp án

Câu 9:

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Xem đáp án

Câu 10:

Lập phương trình đường thẳng (Δ) đi qua M(2;7)  và cách N(1;2)  một khoảng bằng 1.

Xem đáp án

Câu 11:

Cho đường thẳng d có ptts: \(\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = 3 + t}\end{array}} \right.;t \in R\). Tìm điểm \[M \in d\;\] sao cho khoảng cách từ M đến điểm A(0;1) một khoảng bằng 5.

Xem đáp án

Câu 12:

Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\].   Lập phương trình hai đường phân giác của các góc tạo bởi d  và d′

Xem đáp án

Câu 15:

Trong mặt phẳng với hệ toạ độ Oxy, cho 2 đường thẳng \[{d_1}:x - 7y + 17 = 0,\] \[{d_2}:x + y - 5 = 0\]. Viết phương trình đường thẳng d qua điểm M(0;1) tạo với \[{d_1},{d_2}\;\] một tam giác cân tại giao điểm của \[{d_1},{d_2}\].

Xem đáp án

Câu 24:

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

Xem đáp án

Câu 28:

Trong mặt phẳng Oxy cho điểm A(−1;2);B(3;4) và đường thẳng \[{\rm{\Delta }}:\,\,x - 2y - 2 = 0\]. Tìm điểm \[M \in \Delta \] sao cho \[2A{M^2} + M{B^2}\] có giá trị nhỏ nhất.

Xem đáp án

5.0

1 Đánh giá

100%

0%

0%

0%

0%