ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hệ bất phương trình
34 người thi tuần này 4.6 2 K lượt thi 10 câu hỏi 30 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa đường thẳng và mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách từ điểm đến mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Các bài toán về mối quan hệ giữa hai đường thẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Khoảng cách giữa hai đường thẳng chéo nhau
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Góc giữa hai mặt phẳng
ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Diện tích hình trụ, thể tích khối trụ
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A.\[S = \left( { - \infty ; - 3} \right).\]
B. \[S = \left( { - \infty ;2} \right).\]
C. \[S = \left( { - 3;2} \right).\]
D. \[S = \left( { - 3; + \infty } \right).\]
Lời giải
Ta có \(\left\{ {\begin{array}{*{20}{c}}{2 - x >0}\\{2x + 1 < x - 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 >x}\\{x < - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x < 2}\\{x < - 3}\end{array} \Leftrightarrow x < - 3} \right.\)
Đáp án cần chọn là: A
Câu 2
A.\[S = \left( { - 2;\frac{4}{5}} \right).\]
B. \[S = \left( {\frac{4}{5}; + \infty } \right).\]
C. \[S = \left( { - \infty ; - 2} \right).\]
D. \[S = \left( { - 2; + \infty } \right).\]
Lời giải
Ta có
\(\left\{ {\begin{array}{*{20}{c}}{\frac{{2x - 1}}{3} >- x + 1}\\{\frac{{4 - 3x}}{2} < 3 - x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x - 1 >- 3x + 3}\\{4 - 3x < 6 - 2x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5x >4}\\{ - x < 2}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x >\frac{4}{5}}\\{x >- 2}\end{array}} \right. \Leftrightarrow x >\frac{4}{5}\)
Đáp án cần chọn là: B
Câu 3
A.\[\frac{{11}}{2}.\]
B.8
C. \[\frac{9}{2}.\]
D. \[\frac{{47}}{{10}}.\]
Lời giải
Bất phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x - 1 < 2x - 3}\\{5 - 3x < 2x - 6}\\{3x \le x + 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 < x}\\{11 \le 5x}\\{2x \le 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x >2}\\{x \ge \frac{{11}}{5}}\\{x \le \frac{5}{2}}\end{array} \Leftrightarrow } \right.\frac{{11}}{5} \le x \le \frac{5}{2}\)
Suy ra \[a + b = \frac{{11}}{5} + \frac{5}{2} = \frac{{47}}{{10}}.\]
Đáp án cần chọn là: D
Câu 4
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
Lời giải
Bất phương trình\[{x^2} - 1 \le 0\] có tập nghiệm\[{S_1} = \left[ { - 1;1} \right]\]
Bất phương trình \[x - m >0\] có tập nghiệm\[{S_2} = \left( {m; + \infty } \right)\]
Hệ có nghiệm \[ \Leftrightarrow {S_1} \cap {S_2} \ne \emptyset \Leftrightarrow m < 1\]
Đáp án cần chọn là: C
Câu 5
A.\[m < \frac{1}{3}.\]
B. \[0 \ne m < \frac{1}{3}.\]
C. \[m \ne 0.\]
D. m < 0.
Lời giải
Hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{{m^2}x < m + 2}\\{{m^2}x \ge 4m + 1}\end{array}} \right.\)- Với m = 0, ta có hệ bất phương trình trở thành\(\left\{ {\begin{array}{*{20}{c}}{0x < 2}\\{0x \ge 1}\end{array}} \right.\) hệ bất phương trình vô nghiệm.
- Với \[m \ne 0\], ta có hệ bất phương trình tương đương với \(\left\{ {\begin{array}{*{20}{c}}{x < \frac{{m + 2}}{{{m^2}}}}\\{x \ge \frac{{4m + 1}}{{{m^2}}}}\end{array}} \right.\)
Suy ra hệ bất phương trình có nghiệm khi và chỉ khi \[\frac{{m + 2}}{{{m^2}}} >\frac{{4m + 1}}{{{m^2}}} \Leftrightarrow m < \frac{1}{3}\]
Vậy \[0 \ne m < \frac{1}{3}\] là giá trị cần tìm.
Đáp án cần chọn là: B
Câu 6
A.m>2
B.m=2 .
C.\[m \le 2\].
D. m < 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.m>3
B.\[m \ge 3\].
C.m<3.
D.\[m \le 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A.\[\left( { - \frac{1}{4}; - 1} \right) \notin S\]
B.\[S = \left\{ {\left( {x;y} \right)|4x - 3y = 2} \right\}\]
C.Biểu diễn hình học của S là nửa mặt phẳng chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
D.Biểu diễn hình học của S là nửa mặt phẳng không chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x − 3y = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A.Trên mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của hệ bất phương trình đã cho là miền tứ giác ABCO kể cả các cạnh với \[A\left( {0;3} \right),B\left( {\frac{{25}}{8};\frac{9}{8}} \right),C\left( {2;0} \right)\] và O(0;0).
B.Đường thẳng \[\Delta :x + y = m\;\] luôn có giao điểm với miền nghiệm của hệ với mọi giá trị của m.
C.Giá trị lớn nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 174.
D.Giá trị nhỏ nhất của biểu thức x+y , với x và y thỏa mãn hệ bất phương trình đã cho là 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.m>1.
B.m=1.
C.m<1.
D.\[m \ne 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.