Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
465 người thi tuần này 4.6 1.3 K lượt thi 150 câu hỏi 150 phút
🔥 Đề thi HOT:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
PHẦN 1: TƯ DUY ĐỊNH LƯỢNG
Lĩnh vực: Toán học (50 câu – 75 phút)
Biểu đồ dưới đây là phổ điểm của tổ hợp môn: Toán, Lí, Hóa trong kỳ thi tốt nghiệp THPT năm 2020.
Khoảng điểm nào dưới đây có số lượng học sinh đông nhất?
PHẦN 1: TƯ DUY ĐỊNH LƯỢNG
Lĩnh vực: Toán học (50 câu – 75 phút)
Biểu đồ dưới đây là phổ điểm của tổ hợp môn: Toán, Lí, Hóa trong kỳ thi tốt nghiệp THPT năm 2020.

Khoảng điểm nào dưới đây có số lượng học sinh đông nhất?
Lời giải
Dựa vào biểu đồ, khoảng điểm \[\left( {22\,;\,\,23} \right]\] có số lượng học sinh đông nhất. Chọn C.
Câu 2
Một chuyển động có phương trình \[s(t) = {t^2} - 2t + 3\] ( trong đó \[s\] tính bằng mét, \[t\] tính bằng giây). Vận tốc tức thời của chuyển động tại thời điểm \[t = 2s\] là
Lời giải
Ta có \(v\left( t \right) = s'\left( t \right) = 2t - 2 \Rightarrow v\left( 2 \right) = 2 \cdot 2 - 2 = 2\,\,\left( {m/s} \right)\). Chọn D.
Lời giải
Ta có \({3^{2x + 3}} = {3^{4x - 5}} \Leftrightarrow 2x + 3 = 4x - 5 \Leftrightarrow 2x = 8 \Leftrightarrow x = 4.\) Chọn B.
Câu 4
Hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x^2} + 3\left| x \right| = 4}\\{x + y\left( {x + 1} \right) = 2}\end{array}} \right.\) có bao nhiêu nghiệm?
Lời giải
Xét phương trình \[{x^2} + 3\left| x \right| = 4 \Leftrightarrow {\left| x \right|^2} + 3\left| x \right| = 4 \Leftrightarrow {\left| x \right|^2} + 3\left| x \right| - 4 = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}\left| x \right| = 1\\\left| x \right| = - 4\,\,(loai)\end{array} \right. \Leftrightarrow x = \pm 1\].
• Thay \(x = 1\) vào phương trình thứ hai ta được: \(1 + 2y = 2 \Leftrightarrow 2y = 1 \Leftrightarrow y = \frac{1}{2}\) .
• Thay \(x = - 1\) vào phương trình thứ hai ta được: \( - 1 + 0 \cdot y = 2 \Leftrightarrow 0y = 3\) (vô nghiệm).
Vậy hệ đã cho có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {1\,;\,\,\frac{1}{2}} \right)\). Chọn A.
Câu 5
Trong mặt phẳng \(Oxy,\) cho các điểm \(A,{\mkern 1mu} {\mkern 1mu} \,B\) như hình vẽ bên. Trung điểm của đoạn thẳng \(AB\) biểu diễn số phức là

Trong mặt phẳng \(Oxy,\) cho các điểm \(A,{\mkern 1mu} {\mkern 1mu} \,B\) như hình vẽ bên. Trung điểm của đoạn thẳng \(AB\) biểu diễn số phức là
Lời giải
Dựa vào hình vẽ ta thấy: \(A\left( { - 2\,;\,\,1} \right),\,\,B\left( {1\,;\,\,3} \right)\)\( \Rightarrow M\left( { - \frac{1}{2};\,\,2} \right) \Rightarrow z = - \frac{1}{2} + 2i\). Chọn B.
Câu 6
Trong không gian \[Oxyz,\] phương trình mặt phẳng \(\left( P \right)\) đi qua \(M\left( {3\,;\,\,6\,;\,\,9} \right)\) và vuông góc với trục hoành là
Lời giải
Ta có \(\vec i = \overrightarrow {{n_{\left( P \right)}}} = \left( {1\,;\,\,0\,;\,\,0} \right) \Rightarrow \left( P \right):1\left( {x - 3} \right) = 0 \Leftrightarrow x - 3 = 0\). Chọn A.
Câu 7
Trong không gian \[Oxyz,\] điểm B đối xứng với điểm \[A\left( {2\,;\,\,1\,;\,\, - 3} \right)\] qua mặt phẳng \(\left( {Oyz} \right)\) có tọa độ là
Trong không gian \[Oxyz,\] điểm B đối xứng với điểm \[A\left( {2\,;\,\,1\,;\,\, - 3} \right)\] qua mặt phẳng \(\left( {Oyz} \right)\) có tọa độ là
Lời giải
Điểm đối xứng của \[A\left( {2\,;\,\,1\,;\,\, - 3} \right)\] qua mặt phẳng \(\left( {Oyz} \right)\) là \[A\left( { - 2\,;\,\,1\,;\,\,3} \right)\]. Chọn A.
Câu 8
Tập nghiệm của bất phương trình \(\frac{{5x + 1}}{2} + \sqrt {3 - x} \ge \frac{x}{2} + \sqrt {3 - x} \) là
Tập nghiệm của bất phương trình \(\frac{{5x + 1}}{2} + \sqrt {3 - x} \ge \frac{x}{2} + \sqrt {3 - x} \) là
Lời giải
Điều kiện xác định: \(x \le 3\).
\(\frac{{5x + 1}}{2} + \sqrt {3 - x} \ge \frac{x}{2} + \sqrt {3 - x} \Leftrightarrow \frac{{5x + 1}}{2} \ge \frac{x}{2}\)
\( \Leftrightarrow 5x + 1 \ge x \Leftrightarrow 4x \ge - 1 \Leftrightarrow x \ge - \frac{1}{4}\).
Kết hợp với điều kiện \(x \le 3\) ta có tập nghiệm của bất phương là \(\left[ { - \frac{1}{4}\,;\,\,3} \right]\). Chọn B.
Câu 9
Trong không gian với hệ tọa độ \[Oxyz,\] cho ba điểm \(\left( {3\,;\,\,0\,;\,\,0} \right),B\left( {1\,;\,\,2\,;\,\,1} \right),C\left( {2\,;\,\, - 1\,;\,\,2} \right)\). Phương trình mặt đi qua hai điểm \[B,\,\,C\] và tâm mặt cầu nội tiếp tứ diện \[OABC\] là
Trong không gian với hệ tọa độ \[Oxyz,\] cho ba điểm \(\left( {3\,;\,\,0\,;\,\,0} \right),B\left( {1\,;\,\,2\,;\,\,1} \right),C\left( {2\,;\,\, - 1\,;\,\,2} \right)\). Phương trình mặt đi qua hai điểm \[B,\,\,C\] và tâm mặt cầu nội tiếp tứ diện \[OABC\] là
Lời giải
Gọi \[I\] là tâm mặt cầu nội tiếp tứ diện \[OABC.\]
Có \(\left( {ABC} \right):5x + 3y + 4z - 15 = 0\) và \(\left( {OBC} \right):x - z = 0\).
Phương trình các mặt phẳng phân giác của hai mặt phẳng \(\left( {ABC} \right),\,\,\left( {OBC} \right)\) là
\(\frac{{5x + 3y + 4z - 15}}{{\sqrt {{5^2} + {3^2} + {4^2}} }} = \pm \frac{{x - z}}{{\sqrt {{1^2} + {1^2}} }} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{10x + 3y - z - 15 = 0}\\{y + 3z - 5 = 0}\end{array}.} \right.\)
Gọi \(\left( {BCI} \right)\) là mặt phẳng phân giác của hai mặt phẳng \(\left( {ABC} \right),\,\,\left( {OBC} \right)\) và hai điểm \[O,\,\,A\] khác phía với mặt phẳng này.
Do đó \(\left( {BCI} \right):10x + 3y - z - 15 = 0\). Chọn C.
Câu 10
Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là \[13,5\] triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm \[500\,\,000\] đồng mỗi quý. Tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là
Lời giải
Số tiền lương của kỹ sư là một cấp số cộng với số hạng đầu \({u_1} = 13,5\) triệu đồng, công sai \(d = 0,5\) triệu đồng.
Sau 3 năm (hay 12 quý), tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty là: \({S_{12}} = \frac{{\left( {2 \cdot 13,5 + 11 \cdot 0,5} \right) \cdot 12}}{2} = 195\) (triệu đồng). Chọn B.
Câu 11
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\) trên khoảng \(\left( { - 1\,;\,\, + \infty } \right)\) là
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \frac{{2x + 1}}{{{{\left( {x + 1} \right)}^2}}}\) trên khoảng \(\left( { - 1\,;\,\, + \infty } \right)\) là
Lời giải
Ta có: \(\int f \left( x \right){\rm{d}}x = \int {\left( {\frac{2}{{x + 1}} - \frac{1}{{{{\left( {x + 1} \right)}^2}}}} \right){\rm{d}}x} = 2\ln \left( {x + 1} \right) + \frac{1}{{x + 1}} + C\). Chọn A.
Câu 12
Cho hàm số \(f\left( x \right),\) hàm số \(y = f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0\,;{\mkern 1mu} {\mkern 1mu} \,2} \right)\) khi và chỉ khi

Cho hàm số \(f\left( x \right),\) hàm số \(y = f'\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Bất phương trình \(f\left( x \right) < x + m\) (\(m\) là tham số thực) nghiệm đúng với mọi \(x \in \left( {0\,;{\mkern 1mu} {\mkern 1mu} \,2} \right)\) khi và chỉ khi
Lời giải
Ta có \[f\left( x \right) < x + m\,\,\forall x \in \left( {0\,;\,\,2} \right) \Leftrightarrow m > f\left( x \right) - x\,\,\forall x \in \left( {0\,;\,\,2} \right)\]
Dựa vào đồ thị hàm số \[y = f'\left( x \right)\] ta có \[f'\left( x \right) < 1\,\,\forall x \in \left( {0\,;\,\,2} \right)\].
Xét hàm số \[g\left( x \right) = f\left( x \right) - x\] trên khoảng \[\left( {0\,;\,\,2} \right)\] ta có:
\[g'\left( x \right) = f'\left( x \right) - 1\,\,\forall x \in \left( {0\,;\,\,2} \right)\]\[ \Rightarrow g\left( x \right)\] nghịch biến trên \[\left( {0\,;\,\,2} \right)\].
Do đó \(m \ge g\left( 0 \right) = f\left( 0 \right)\). Chọn B.
Câu 13
Bạn Minh ngồi trên máy bay đi du lịch thế giới và vận tốc chuyển động cùa máy bay là \(v(t) = 3{t^2} + 5\;{\rm{m}}/{\rm{s}}\). Gia tốc của máy bay ở giây thứ 10 là
Bạn Minh ngồi trên máy bay đi du lịch thế giới và vận tốc chuyển động cùa máy bay là \(v(t) = 3{t^2} + 5\;{\rm{m}}/{\rm{s}}\). Gia tốc của máy bay ở giây thứ 10 là
Lời giải
Ta có: \(a\left( t \right) = {\left[ {v\left( t \right)} \right]^\prime } = 6t \Rightarrow a\left( {10} \right) = 60\;\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.
Câu 14
Một người gửi tiền vào ngân hàng 100 triệu đồng thể thức lãi kép, kỳ hạn là 1 tháng với lãi suất \[0,5\% \] một tháng. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu đồng?
Một người gửi tiền vào ngân hàng 100 triệu đồng thể thức lãi kép, kỳ hạn là 1 tháng với lãi suất \[0,5\% \] một tháng. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu đồng?
Lời giải
Ta có \({A_n} = A{\left( {1 + r} \right)^n}\)\( \Rightarrow 100{\left( {1 + \frac{{0,5}}{{100}}} \right)^n} > 125 \Leftrightarrow n > {\log _{\left( {1 + \frac{{0,5}}{{100}}} \right)}}\frac{{125}}{{100}} \approx 44,74.\)
Vậy sau ít nhất 45 tháng. Chọn B.
Câu 15
Tập nghiệm \[S\] của bất phương trình \({\log _{\frac{1}{2}}}(x + 1) < {\log _{\frac{1}{2}}}(2x - 1)\) là
Tập nghiệm \[S\] của bất phương trình \({\log _{\frac{1}{2}}}(x + 1) < {\log _{\frac{1}{2}}}(2x - 1)\) là
Lời giải
Bất phương trình \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + 1 > 2x - 1}\\{2x - 1 > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x < 2}\\{x > \frac{1}{2}}\end{array}} \right.} \right.\). Vậy \(S = \left( {\frac{1}{2};\,\,2} \right)\). Chọn A.
Câu 16
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y = {x^2},\,\,y = 2x\). Thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \[Ox\] bằng
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y = {x^2},\,\,y = 2x\). Thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \[Ox\] bằng
Lời giải
Xét phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\end{array}} \right.\).
Do đó thể tích của khối tròn xoay là: \[V = \pi \int\limits_0^2 {\left| {{{\left( {{x^2}} \right)}^2} - {{\left( {2x} \right)}^2}} \right|{\rm{d}}x} = \frac{{64\pi }}{{15}}\]. Chọn B.
Câu 17
Cho hàm số \(y = f\left( x \right) = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\). Tất cả các giá trị thực của tham số \(m\) để hàm số đã cho giảm trên nửa khoảng \(\left[ {1\,;\,\, + \infty } \right)\) là
Cho hàm số \(y = f\left( x \right) = \frac{{m{x^3}}}{3} + 7m{x^2} + 14x - m + 2\). Tất cả các giá trị thực của tham số \(m\) để hàm số đã cho giảm trên nửa khoảng \(\left[ {1\,;\,\, + \infty } \right)\) là
Lời giải
Tập xác định \(D = \mathbb{R}\), yêu cầu của bài toán đưa đến giải bất phương trình:
\(m{x^2} + 14mx + 14 \le 0,\,\,\forall x \ge 1 \Leftrightarrow m \le {\min _{\left[ {1\,;\,\, + \infty } \right)}}\frac{{ - 14}}{{{x^2} + 14x}} = - \frac{{14}}{{15}}{\rm{.}}\) Chọn A.
Câu 18
Cho số phức z thỏa mãn \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i\). Hiệu phần thực và phần ảo của số phức \[z\] là
Lời giải
Ta có \(\left( {3 + 2i} \right)z + {\left( {2 - i} \right)^2} = 4 + i \Leftrightarrow z = \frac{{4 + i - {{\left( {2 - i} \right)}^2}}}{{3 + 2i}} = 1 + i\). Chọn D.
Câu 19
Trên mặt phẳng phức, tập hợp các số phức \(z = x + yi\) thỏa mãn \[\left| {z + 2 + i} \right| = \left| {\bar z - 3i} \right|\] là đường thẳng có phương trình
Trên mặt phẳng phức, tập hợp các số phức \(z = x + yi\) thỏa mãn \[\left| {z + 2 + i} \right| = \left| {\bar z - 3i} \right|\] là đường thẳng có phương trình
Lời giải
Từ \(z = x + yi \Rightarrow \left| {\left( {x + 2} \right) + \left( {y + 1} \right)i} \right| = \left| {x - \left( {y + 3} \right)i} \right|\).
Do đó \[{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y + 3} \right)^2} \Leftrightarrow 4x + 2y + 5 = 6y + 9 \Leftrightarrow y = x - 1\]. Chọn D.
Câu 20
Trong mặt phẳng tọa độ \[Oxy,\] điểm \[N\] trên cạnh \[BC\] của tam giác \[ABC\] có \(A\left( {1\,;\,\, - 2} \right),\) \[B\left( {2\,;\,\,3} \right),\,\,C\left( { - 1\,;\,\, - 2} \right)\] sao cho \({S_{ABN}} = 3{S_{ANC}}\). Tọa độ \[N\] là
Trong mặt phẳng tọa độ \[Oxy,\] điểm \[N\] trên cạnh \[BC\] của tam giác \[ABC\] có \(A\left( {1\,;\,\, - 2} \right),\) \[B\left( {2\,;\,\,3} \right),\,\,C\left( { - 1\,;\,\, - 2} \right)\] sao cho \({S_{ABN}} = 3{S_{ANC}}\). Tọa độ \[N\] là
Lời giải
Ta có \({S_{ABN}} = 3{S_{ANC}} \Leftrightarrow \frac{{\frac{1}{2} \cdot d(A,BN) \cdot BN}}{{\frac{1}{2} \cdot d(A,CN) \cdot CN}} = \frac{{BN}}{{CN}} = 3\)
\( \Rightarrow \overrightarrow {BN} = 3\overrightarrow {NC} \Rightarrow N\left( {\frac{{ - 1}}{4};\frac{{ - 3}}{4}} \right)\). Chọn A.
Câu 21
Cho \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) (với \(\alpha \ne k\pi \)). Xác định \(\alpha \) để \(\left( {{C_\alpha }} \right)\) có bán kính lớn nhất.
Cho \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) (với \(\alpha \ne k\pi \)). Xác định \(\alpha \) để \(\left( {{C_\alpha }} \right)\) có bán kính lớn nhất.
Lời giải
Bán kính của đường tròn \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) là:
\(R = \sqrt {c{\rm{o}}{{\rm{s}}^2}\alpha + {{\sin }^2}\alpha - c{\rm{os}}2\alpha } = \sqrt {1 - c{\rm{os}}2\alpha } = \sqrt {2{{\sin }^2}\alpha } \)
Ta có \(2{\sin ^2}\alpha \le 2\,\,\forall \alpha \) nên \[R \le \sqrt 2 \].
Dấu xảy ra \[\sin \alpha = 1 \Leftrightarrow \alpha = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right).\]
Vậy \[{R_{m{\rm{ax}}}} = \sqrt 2 \Leftrightarrow \alpha = \frac{\pi }{2} + k2\pi \].
Chọn B
Câu 22
Trong không gian \(Oxyz\), mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {2\,;\,\,1\,;\,\, - 3} \right)\), song song với trục \(Oz\) và vuông góc với mặt phẳng \(\left( Q \right):x + y - 3z = 0\). Phương trình mặt phẳng \(\left( P \right)\) là
Trong không gian \(Oxyz\), mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {2\,;\,\,1\,;\,\, - 3} \right)\), song song với trục \(Oz\) và vuông góc với mặt phẳng \(\left( Q \right):x + y - 3z = 0\). Phương trình mặt phẳng \(\left( P \right)\) là
Lời giải
Chọn D
Câu 23
Cho hình nón có độ dài đường sinh bằng 5 và bán kính đường tròn đáy bằng 4. Thể tích khối nón tạo bởi hình nón đó là
Cho hình nón có độ dài đường sinh bằng 5 và bán kính đường tròn đáy bằng 4. Thể tích khối nón tạo bởi hình nón đó là
Lời giải
Chọn D
Câu 24
Một khối pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính \(R\) và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,\,\,\ell \) thỏa mãn \[r = \frac{1}{2}\ell \] và \(\ell = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91\,\,c{m^2}.\) Diện tích của khối cầu \(\left( {{H_1}} \right)\) là

Lời giải
Chọn B
Câu 25
Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A,{\mkern 1mu} \,\,AC = 2\sqrt 2 ,\)biết góc giữa \(AC'\) và \(\left( {ABC} \right)\) bằng \(60^\circ \) và \(AC' = 4\). Thể tích \[V\] của khối lăng trụ \(ABC.A'B'C'\) là
Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A,{\mkern 1mu} \,\,AC = 2\sqrt 2 ,\)biết góc giữa \(AC'\) và \(\left( {ABC} \right)\) bằng \(60^\circ \) và \(AC' = 4\). Thể tích \[V\] của khối lăng trụ \(ABC.A'B'C'\) là
Lời giải
![Cho hình lăng trụ \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông cân tại \(A,{\mkern 1mu} \,\,AC = 2\sqrt 2 ,\)biết góc giữa \(AC'\) và \(\left( {ABC} \right)\) bằng \(60^\circ \) và \(AC' = 4\). Thể tích \[V\] của khối lăng trụ \(ABC.A'B'C'\) là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid4-1722816091.png)
Ta có \(ABC\) là tam giác vuông cân tại \(A,\,\,AC = 2\sqrt 2 \); \[{S_{ABC}} = \frac{1}{2}A{C^2} = \frac{1}{2} \cdot {\left( {2\sqrt 2 } \right)^2} = 4\].
Do \(\left( {AC',\left( {ABC} \right)} \right) = 60^\circ \) nên
\(d\left( {C',\left( {ABC} \right)} \right) = AC' \cdot \sin 60^\circ = 4 \cdot \frac{{\sqrt 3 }}{2} = 2\sqrt 3 \)
Thể tích khối lăng trụ \(ABC.A'B'C'\) là:
\[V = S{}_{ABC} \cdot \,d\left( {C',\left( {ABC} \right)} \right) = 4 \cdot 2\sqrt 3 = 8\sqrt 3 \]. Chọn D.Câu 26
Tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 3x - 2\) tại điểm có hệ số góc lớn nhất có phương trình
Tiếp tuyến của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 3x - 2\) tại điểm có hệ số góc lớn nhất có phương trình
Lời giải
Ta có: \(y' = - 3{x^2} + 12x - 3 \Rightarrow {y'_{{\rm{max}}}} = 9\) tại \(x = 2 \Rightarrow PTTT:y = 9x - 10\). Chọn B.
Câu 27
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 2 + m + \left( {1 - m} \right)t}\\{y = 1 - 2t}\\{z = - m + \left( {m + 1} \right)t}\end{array}} \right.\) và điểm \(A\left( {1\,;\,\,2\,;\,\,3} \right).\) Khi \[m\] thay đổi, gọi \[d\] là khoảng cách từ \[A\] đến \(\Delta \). Giá trị lớn nhất và giá trị nhỏ nhất của \[d\] lần lượt là
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 2 + m + \left( {1 - m} \right)t}\\{y = 1 - 2t}\\{z = - m + \left( {m + 1} \right)t}\end{array}} \right.\) và điểm \(A\left( {1\,;\,\,2\,;\,\,3} \right).\) Khi \[m\] thay đổi, gọi \[d\] là khoảng cách từ \[A\] đến \(\Delta \). Giá trị lớn nhất và giá trị nhỏ nhất của \[d\] lần lượt là
Lời giải
Gọi \(M\left( {2 + m + \left( {1 - m} \right)t\,;\,\,1 - 2t\,;\,\, - m + \left( {m + 1} \right)t} \right)\) là điểm nằm trên \(\Delta \).
Khi đó ta có: \({x_M} + {y_M} + {z_M} - 3 = 0\,\,\forall m,\,\,t\) hay \(M\) luôn thuộc mặt phẳng \(\left( P \right):x + y + z - 3 = 0\).
Do đó \(\Delta \) luôn thuộc mặt phẳng \(\left( P \right)\) cố định.
Mặt khác cho \(t = 1\), ta có \(\Delta \) luôn đi qua điểm \(B\left( {3\,;\,\, - 1\,;\,\,1} \right)\).
Khi đó ta có: \({d_{\left( {A,\left( P \right)} \right)}} \le d \le AB \Leftrightarrow \sqrt 3 \le d \le \sqrt {17} \). Chọn D.
Câu 28
Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( P \right):x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}.\) Hình chiếu vuông góc của \[d\] trên \(\left( P \right)\) có phương trình là
Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( P \right):x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}.\) Hình chiếu vuông góc của \[d\] trên \(\left( P \right)\) có phương trình là
Lời giải
Ta có \[d\] đi qua điểm \(M\left( {0\,;\,\, - 1\,;\,\,2} \right)\) và \(\overrightarrow {{u_d}} = \left( {1\,;\,\,2\,;\,\, - 1} \right)\).
Gọi \[\left( Q \right)\] là mặt phẳng chứa \[d\] và vuông góc \(\left( P \right)\).
Khi đó \[\left( Q \right)\] đi qua điểm \(M\left( {0\,;\,\, - 1\,;\,\,2} \right)\) và có \[\overrightarrow {{n_{\left( Q \right)}}} = \left[ {\overrightarrow {{u_d}} \,,\,\,\overrightarrow {{n_{\left( P \right)}}} } \right] = \left( {3\,;\,\, - 2\,;\,\, - 1} \right)\]
\[ \Rightarrow \left( Q \right):3x - 2y - z = 0\]
Gọi \(\Delta \) là hình chiếu vuông góc của \[d\] trên \(\left( P \right)\), khi đó \(\Delta :\left\{ {\begin{array}{*{20}{l}}{3x - 2y - z = 0}\\{x + y + z - 3 = 0}\end{array}} \right.\).
Nên có phương trình chính tắc là \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}\).
Cho \[z = 1\], ta được \[x = 1\,,\,\,y = 1.\] Do đó, điểm \[A\left( {1\,;\,\,1\,;\,\,1} \right)\] nằm trên \[\Delta \].
Ta có đường thẳng \[\Delta \] đi qua điểm \[A\left( {1\,;\,\,1\,;\,\,1} \right)\] và có một vectơ chỉ phương \({\vec u_\Delta } = \left[ {\overrightarrow {{n_P}} ,\,\,\overrightarrow {{n_Q}} } \right] = \left( {1\,;\,\,4\,;\,\, - 5} \right)\).
Do đó \[\Delta \] có phương trình chính tắc là \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}\). Chọn C.
Câu 29
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây. Số điểm cực trị của hàm số \(g\left( x \right) = {e^{2f\left( x \right) + 1}} + {5^{f\left( x \right)}}\) là

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây. Số điểm cực trị của hàm số \(g\left( x \right) = {e^{2f\left( x \right) + 1}} + {5^{f\left( x \right)}}\) là
Lời giải
Ta có \(g\left( x \right) = {e^{2f\left( x \right) + 1}} + {5^{f\left( x \right)}}\)
\( \Rightarrow g'\left( x \right) = 2f'\left( x \right) \cdot {e^{2f\left( x \right) + 1}} + f'\left( x \right) \cdot {5^{f\left( x \right)}} \cdot \ln 5 = f'\left( x \right)\left[ {2{e^{2f\left( x \right) + 1}} + {5^{f\left( x \right)}} \cdot \ln 5} \right]\).
Khi đó \(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = 4\end{array} \right.\) (vì \(2{e^{2f\left( x \right) + 1}} + {5^{f\left( x \right)}} \cdot \ln 5 > 0\,\,\forall x)\).
Qua các điểm \(x = - 1\,,\,\,x = 1\,,\,\,x = 4\) thì \(f'\left( x \right)\) đổi dấu nên \(g'\left( x \right)\) cũng đổi dấu (vì dấu của \(g'\left( x \right)\) phụ thuộc vào dấu của \(f'\left( x \right)\).
Vậy hàm số \(y = g\left( x \right)\) có 3 điểm cực trị. Chọn C.
Câu 30
Trong không gian \[Oxyz,\] cho \(A\left( { - 1\,;\,\,3\,;\,\, - 1} \right),\,\,B\left( {4\,;\,\, - 2\,;\,\,4} \right)\) và điểm M thay đổi trong không gian thỏa mãn \(3MA = 2MB\). Giá trị lớn nhất của \(P = \left| {2\overrightarrow {MA} - \overrightarrow {MB} } \right|\) bằng
Trong không gian \[Oxyz,\] cho \(A\left( { - 1\,;\,\,3\,;\,\, - 1} \right),\,\,B\left( {4\,;\,\, - 2\,;\,\,4} \right)\) và điểm M thay đổi trong không gian thỏa mãn \(3MA = 2MB\). Giá trị lớn nhất của \(P = \left| {2\overrightarrow {MA} - \overrightarrow {MB} } \right|\) bằng
Lời giải
Ta có \(3MA = 2MB\)
\( \Leftrightarrow 9{\left( {x + 1} \right)^2} + 9{\left( {y - 3} \right)^2} + 9{\left( {z + 1} \right)^2} = 4{\left( {x - 4} \right)^2} + 4{\left( {y + 2} \right)^2} + 4{\left( {z - 4} \right)^2}\)
Rút gọn ta được \(M \in \left( S \right):{\left( {x + 5} \right)^2} + {\left( {y - 7} \right)^2} + {\left( {z + 5} \right)^2} = 108\) có tâm \(I\left( { - 5\,;\,\,7\,;\,\, - 5} \right),\,\,R = 6\sqrt 3 \).
\(P = \left| {2\overrightarrow {AM} - \overrightarrow {BM} } \right| = \left| {2\left( {x + 1\,;\,\,y - 3\,;\,\,z + 1} \right) - \left( {x - 4\,;\,\,y + 2\,;\,\,z - 4} \right)} \right| = \left| {\left( {x + 6\,;\,\,y - 8\,;\,\,z + 6} \right)} \right| = MC\) với tọa độ điểm \(C\left( { - 6\,;\,\,8\,;\,\, - 6} \right)\) ta có \(M{C_{\max }} = CI + R = 7\sqrt 3 \). Chọn A.
Câu 31
Cho hàm số \(y = f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tất cả các giá trị của tham số m để hàm \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị là
Cho hàm số \(y = f\left( x \right) = {x^3} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tất cả các giá trị của tham số m để hàm \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị là
Lời giải
Ta có: \(y' = 3{x^2} - 2\left( {2m - 1} \right)x + 2 - m\).
Hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 điểm cực trị khi và chỉ khi hàm số \(f(x)\) có hai điểm cực trị dương
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta > 0}\\{S > 0}\\{P > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{\left( {2m - 1} \right)}^2} - 3\left( {2 - m} \right) > 0}\\{\frac{{2\left( {2m - 1} \right)}}{3} > 0}\\{\frac{{2 - m}}{3} > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4{m^2} - m - 5 > 0}\\{m > \frac{1}{2}}\\{m < 2}\end{array} \Leftrightarrow \frac{5}{4} < m < 2} \right.} \right.} \right.\). Chọn D.
Câu 32
Số giá trị nguyên của \(m\) để phương trình \(\sqrt {{x^2} - 2mx + 1} = \sqrt {x - 3} \) có 2 nghiệm phân biệt là
Lời giải
ĐKXĐ: \(x \ge 3\).
Ta có \[\sqrt {{x^2} - 2mx + 1} = \sqrt {x - 3} \Leftrightarrow {x^2} - 2mx + 1 = x - 3 \Leftrightarrow {x^2} - \left( {2m + 1} \right)x + 4 = 0 & (*)\]
Phương trình ban đầu có 2 nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt lớn hơn hoặc bằng 3.
Khi đó ta có \(\left\{ \begin{array}{l}\Delta > 0\\{x_1} + {x_2} \ge 0\\\left( {{x_1} - 3} \right)\left( {{x_2} - 3} \right) \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {2m + 1} \right)^2} - 14 > 0\\2m + 1 \ge 6\\4 - 3\left( {2m + 1} \right) + 9 \ge 0\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2m + 1 > \sqrt {14} \\2m + 1 < - \sqrt {14} \end{array} \right.\\m \ge \frac{5}{2}\\m \le \frac{5}{3}\end{array} \right. \Rightarrow m \in \emptyset \).
Chọn D.
Câu 33
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(x \cdot f\left( x \right) \cdot f'\left( x \right) = {f^2}\left( x \right) - x,\,\,\forall x \in \mathbb{R}\) và có \(f\left( 2 \right) = 1\). Tích phân \[\int\limits_0^2 {{f^2}\left( x \right)dx} \] bằng
Lời giải
Ta có: \(x \cdot f\left( x \right) \cdot f'\left( x \right) = {f^2}\left( x \right) - x \Leftrightarrow 2x \cdot f\left( x \right) \cdot f'\left( x \right) = 2f_2^2\left( x \right) - 2x\)
\[ \Leftrightarrow 2x \cdot f\left( x \right) \cdot f'\left( x \right) + {f^2}\left( x \right) = 3{f^2}\left( x \right) - 2x \Leftrightarrow \int\limits_0^2 {{{\left( {x,\,\,{f^2}\left( x \right)} \right)}^\prime }dx} = 3\int\limits_0^2 {{f^2}\left( x \right)dx} - \int\limits_0^2 {2xdx} \]
\(\left. { \Leftrightarrow \left( {x \cdot {f^2}\left( x \right)} \right)} \right|_0^2 = 3I - 4 \Leftrightarrow 2 = 3I - 4 \Leftrightarrow I = 2\). Chọn C.
Câu 34
Có bao nhiêu cách xếp khác nhau cho 5 bạn nam và 4 bạn nữ đứng thành một hàng ngang sao cho các bạn nữ đứng cạnh nhau?
Có bao nhiêu cách xếp khác nhau cho 5 bạn nam và 4 bạn nữ đứng thành một hàng ngang sao cho các bạn nữ đứng cạnh nhau?
Lời giải
Xếp 4 bạn nữ đứng cạnh nhau có \[4!\] (cách).
Xếp 5 bạn nam và 4 bạn nữ đứng cạnh nhau có \[6!\] (cách).
Số cách xếp thỏa mãn đề bài là: \(4!\,.\,\,6! = 17\,\,280\) (cách). Chọn D.
Câu 35
Cho khối chóp \[S.ABCD\] có đáy là hình vuông, \(SA \bot \left( {ABCD} \right),\,\,M,{\rm{ }}N\) lần lượt là trung điểm của \[SA,\,\,SB.\] Gọi \({V_1},\,\,{V_2}\) lần lượt là thể tích của các khối \[S.MNCD\,,\,\,MNABCD.\] Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
Cho khối chóp \[S.ABCD\] có đáy là hình vuông, \(SA \bot \left( {ABCD} \right),\,\,M,{\rm{ }}N\) lần lượt là trung điểm của \[SA,\,\,SB.\] Gọi \({V_1},\,\,{V_2}\) lần lượt là thể tích của các khối \[S.MNCD\,,\,\,MNABCD.\] Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
Lời giải
![Cho khối chóp \[S.ABCD\] có đáy là hình vuông, \(SA \bot \left( {ABCD} \right),\,\,M,{\rm{ }}N\) lần lượt là trung điểm của (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid6-1722816616.png)
Ta có \(\frac{{{V_{S.MAND}}}}{{{V_{S.ABCD}}}} = \frac{{2 + 2 + 1 + 1}}{{4 \cdot 2 \cdot 2 \cdot 1 \cdot 1}} = \frac{3}{8}\). Từ đây, có \(\frac{{{V_1}}}{{{V_2}}} = \frac{3}{5}\).
Công thức đặc biệt: Cho khối chóp \[S.ABCD\] có đáy là hình bình hành như hình vẽ bên.
Đặt \(\frac{{SA}}{{SA'}} = x\,;\,\,\frac{{SB}}{{SB'}} = y\,;\,\,\frac{{SC}}{{SC'}} = z\,;\,\,\frac{{SD}}{{SD'}} = t\).
Khi đó, ta có \(x + z = y + t\).
Bên cạnh đó: \(\frac{{{V_{S.A'B'C'D'}}}}{{{V_{S.ABCD}}}} = \frac{{x + y + z + t}}{{4xyzt}}\). Chọn D.
Câu 36
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^4} - 3{x^2} + 1\) tại các điểm có tung độ bằng 5?
Đáp án: ……….
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = {x^4} - 3{x^2} + 1\) tại các điểm có tung độ bằng 5?
Đáp án: ……….
Lời giải
Gọi \(M\left( {m\,;\,\,5} \right) \in \left( C \right)\) suy ra \({m^4} - 3{m^2} + 1 = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m = \pm \,2.\)
Ta có \(y' = 4{x^3} - 6x \Rightarrow \left[ \begin{array}{l}y'\left( 2 \right) = 20\\y'\left( { - 2} \right) = - 20\end{array} \right.\) .
Suy ra phương trình tiếp tuyến cần tìm là \[\left[ \begin{array}{l}y = 20x - 35\\y = - 20x - 35\end{array} \right..\]
Đáp án: 2.
Câu 37
Xác suất bắn trúng mục tiêu của một vận động viên bắn cung là \[0,7.\] Người đó bắn hai mũi tên một cách độc lập. Xác suất để một mũi tên trúng mục tiêu và một mũi tên trượt mục tiêu là bao nhiêu?
Đáp án: ……….
Xác suất bắn trúng mục tiêu của một vận động viên bắn cung là \[0,7.\] Người đó bắn hai mũi tên một cách độc lập. Xác suất để một mũi tên trúng mục tiêu và một mũi tên trượt mục tiêu là bao nhiêu?
Đáp án: ……….
Lời giải
Gọi \({A_i}\) là biến cố bắn trúng mục tiêu của mũi tên thứ i.
X là biến cố một mũi tên trúng mục tiêu và một mũi tên trượt mục tiêu.
Khi đó \(X = {A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}\).
Xác suất cần tìm \(P(X) = P\left( {{A_1}{{\bar A}_2}} \right) + P\left( {{{\bar A}_1}{A_2}} \right) = 0,7 \cdot 0.3 + 0,3 \cdot 0,7 = 0,42\).
Câu 38
Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng
Đáp án: ……….
Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng
Đáp án: ……….Lời giải
![Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng Đáp án: ………. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid7-1722816753.png)
Kẻ \(EF\,{\rm{//}}\,AB\,\,\left( {F \in CB} \right)\). Khi đó \[EF\] là đường trung bình của tam giác ABC và \(EF = \frac{{AB}}{2}.\)
Xét tam giác \[DBM\] ta có:
\(\frac{{FD}}{{BD}} = \frac{{EF}}{{BM}} = \frac{1}{3} \Rightarrow FD = \frac{1}{2}BF = \frac{1}{2}FC{\rm{, }}\)tức \[D\] là trung điểm của \[FC\] do đó \(\frac{{BD}}{{CD}} = 3\).
Đáp án: 3.Câu 39
Tìm \[a\] để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {4x + 1} - 1}}{{a{x^2} + \left( {2a + 1} \right)x}}{\rm{ khi }}x \ne 0}\\{4\quad {\rm{ khi }}x = 0}\end{array}} \right.\) liên tục tại \(x = 0\).
Đáp án: ……….
Tìm \[a\] để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {4x + 1} - 1}}{{a{x^2} + \left( {2a + 1} \right)x}}{\rm{ khi }}x \ne 0}\\{4\quad {\rm{ khi }}x = 0}\end{array}} \right.\) liên tục tại \(x = 0\).
Đáp án: ……….
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4x + 1} - 1}}{{x\left( {ax + 2a + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{4}{{\left( {ax + 2a + 1} \right)\left( {\sqrt {4x + 1} + 1} \right)}} = \frac{2}{{2a + 1}}\).
Hàm số liên tục tại \[x = 0 \Leftrightarrow \frac{2}{{2a + 1}} = 4 \Leftrightarrow a = - \frac{1}{4}\].
Đáp án: \[ - \frac{1}{4}\].
Câu 40
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = 4{x^3} - 6{x^2} + 1\) đi qua điểm \(M\left( { - 1\,;\,\, - 9} \right)?\)
Đáp án: ……….
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y = 4{x^3} - 6{x^2} + 1\) đi qua điểm \(M\left( { - 1\,;\,\, - 9} \right)?\)
Đáp án: ……….
Lời giải
Ta có: \(y' = 12{x^2} - 12x\).
Phương trình tiếp tuyến tại \({M_0}\left( {{x_0};\,\,{y_0}} \right)\) có dạng \[\left( \Delta \right):y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\].
\( \Leftrightarrow \left( \Delta \right):y = \left( {12x_0^2 - 12{x_0}} \right)\left( {x - {x_0}} \right) + 4x_0^3 - 6x_0^2 + 1.{\rm{ }}\)
Do \(M\left( { - 1\,;\,\, - 9} \right) \in \left( \Delta \right)\) nên \( - 9 = \left( {12x_0^2 - 12{x_0}} \right)\left( { - 1 - {x_0}} \right) + 4x_0^3 - 6x_0^2 + 1\).
\( \Leftrightarrow - 8x_0^3 - 6x_0^2 + 12{x_0} + 10 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = - 1}\\{{x_0} = \frac{5}{4}}\end{array}.} \right.\)
Do đó, số tiếp tuyến thỏa mãn yêu cầu là 2.
Đáp án: 2.
Câu 41
Một chiếc cổng parabol dạng \[y = \frac{{ - 1}}{2}{x^2}\] có chiều rộng \[d = 8\,\,m.\] Chiều cao \[h\] của cổng (tính theo mét) là
Đáp án: ……….
Một chiếc cổng parabol dạng \[y = \frac{{ - 1}}{2}{x^2}\] có chiều rộng \[d = 8\,\,m.\] Chiều cao \[h\] của cổng (tính theo mét) là
Đáp án: ……….
Lời giải
Khoảng cách từ chân cổng đến trục đối xứng \(Oy\) là \(\frac{8}{2} = 4\).
Hoành độ 2 chân cổng là \( - 4\,;\,\,4\) và tung độ chân cổng là \(y = \frac{{ - 1}}{2} \cdot {4^2} = - 8\).
Chiều cao của cổng là \(\left| { - 8} \right| = 8\,\,(m)\).
Đáp án: 8.
Lời giải
Ta có: \(y' = 2{x^3} - 2\left( {m - 2} \right)x = 2x\left( {{x^2} - m + 2} \right)\).
Xét \(y' = 0 \Leftrightarrow 2x\left( {{x^2} - m + 2} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m - 2}\end{array}} \right.\).
Để đồ thị hàm số đã cho có 3 điểm cực trị thì \(m - 2 > 0 \Leftrightarrow m > 2\).
Khi đó toạ độ các điểm cực trị là:
\(A\left( {0\,;\,\,{m^2} + 1} \right),\,\,B\left( {\sqrt {m - 2} \,;\,\,\frac{{{m^2}}}{2} + 2m - 1} \right),\,\,C\left( { - \sqrt {m - 2} \,;\,\,\frac{{{m^2}}}{2} + 2m - 1} \right)\).
Ta thấy \(A \in Oy\). Để \(B,\,\,C \in Ox\) thì \(\frac{{{m^2}}}{2} + 2m - 1 = 0 \Leftrightarrow m = - 2 \pm \sqrt 6 \) (không thỏa mãn).
Vậy không tồn tại giá trị nào của m thỏa mãn bài toán.
Đáp án: 0.
Câu 43
Cho số nguyên dương n thỏa mãn \(C_n^0 + \frac{{C_n^1}}{{1 + 1}} + \frac{{C_n^2}}{{1 + 2}} + \ldots + \frac{{C_n^n}}{{1 + n}} = \frac{{{2^{100}} - 1}}{{100}}\). Giá trị của \[n\] bằng bao nhiêu?
Đáp án: ……….
Cho số nguyên dương n thỏa mãn \(C_n^0 + \frac{{C_n^1}}{{1 + 1}} + \frac{{C_n^2}}{{1 + 2}} + \ldots + \frac{{C_n^n}}{{1 + n}} = \frac{{{2^{100}} - 1}}{{100}}\). Giá trị của \[n\] bằng bao nhiêu?
Đáp án: ……….
Lời giải
Ta có \(\int\limits_0^1 {{{\left( {1 + x} \right)}^n}dx} = \int\limits_0^1 {{{\left( {1 + x} \right)}^n}d\left( {1 + x} \right)} = \left. {\frac{{{{\left( {1 + x} \right)}^{n + 1}}}}{{n + 1}}} \right|_0^1 = \frac{{{2^{n + 1}} - 1}}{{n + 1}}\)
Mặt khác, \({\left( {1 + x} \right)^n} = C_n^0 + C_n^1 \cdot x + C_n^2 \cdot {x^2} + \ldots + C_n^n \cdot {x^n}\)
\[ \Leftrightarrow \int\limits_0^1 {{{\left( {1 + x} \right)}^n}dx} = C_n^0\int\limits_0^1 {dx} + C_n^1\int\limits_0^1 {x \cdot dx} + C_n^2\int\limits_0^1 {{x^2}dx} + \ldots + C_n^n\int\limits_0^1 {{x^n}dx} \]
\( \Leftrightarrow \int\limits_0^1 {{{\left( {1 + x} \right)}^n}dx} = \left. {C_n^0x} \right|_0^1 + \left. {\frac{{C_n^1{x^2}}}{2}} \right|_0^1 + \left. {\frac{{C_n^2{x^3}}}{3}} \right|_0^1 + \ldots + \left. {\frac{{C_n^n{x^{n + 1}}}}{{n + 1}}} \right|_0^1\)
\( \Leftrightarrow \frac{{{2^{n + 1}} - 1}}{{n + 1}} = C_n^0 + \frac{{C_n^1}}{{1 + 1}} + \frac{{C_n^2}}{{1 + 2}} + \ldots + \frac{{C_n^n}}{{n + 1}} \Leftrightarrow \frac{{{2^{n + 1}} - 1}}{{n + 1}} = \frac{{{2^{100}} - 1}}{{100}} \Leftrightarrow n = 99.\)
Đáp án: 99.
Câu 44
Cho số phức z có môđun bằng 2. Môđun của số phức \(w = \frac{z}{i}\) bằng bao nhiêu?
Đáp án: ……….
Cho số phức z có môđun bằng 2. Môđun của số phức \(w = \frac{z}{i}\) bằng bao nhiêu?
Đáp án: ……….
Lời giải
Ta có \(\left| w \right| = \left| {\frac{z}{i}} \right| = \frac{{\left| z \right|}}{{\left| i \right|}} = \frac{2}{1} = 2\).
Đáp án: 2.
Câu 45
Một cốc nước dạng hình trụ có chiều cao \[15{\rm{ }}cm,\] đường kính đáy \[4{\rm{ }}cm,\] lượng nước trong cốc cao \[10{\rm{ }}cm.\] Thả vào cốc nước 3 viên đá hình cầu có đường kính \[2{\rm{ }}cm.\] Hỏi nước dâng cao cách mép cốc bao nhiêu centimét? (bỏ qua độ dày của cốc).
Đáp án: ……….
Một cốc nước dạng hình trụ có chiều cao \[15{\rm{ }}cm,\] đường kính đáy \[4{\rm{ }}cm,\] lượng nước trong cốc cao \[10{\rm{ }}cm.\] Thả vào cốc nước 3 viên đá hình cầu có đường kính \[2{\rm{ }}cm.\] Hỏi nước dâng cao cách mép cốc bao nhiêu centimét? (bỏ qua độ dày của cốc).
Đáp án: ……….
Lời giải
Lượng nước dâng lên chính là tổng thể tích của 3 viên đá thả vào và bằng:
\({V_b} = 3 \cdot \frac{4}{3}\pi r_b^3 = 4\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
Ta có phần nước dâng lên là khối trụ có đáy bằng với đáy cốc nước và thể tích là \(4\pi \,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\).
Chiều cao của phần nước dâng lên là \({h_d}\) thỏa mãn. \(4\pi = \pi {r^2}{h_d} \Leftrightarrow {h_d} = 1\,\,(\;{\rm{cm}})\).
Vậy nước dâng cao cách mép cốc là \(15 - 10 - 1 = 4\,\,(\;{\rm{cm}})\).
Đáp án: 4.
Câu 46
Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right),\) trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \[\left( {ABC} \right)\] tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\). Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….
Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right),\) trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \[\left( {ABC} \right)\] tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\). Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….
Lời giải
Ta có \(\left( {ABC} \right):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Mặt cầu \[\left( S \right)\] có tâm \(I\left( {2\,;\,\,1\,;\,\,1} \right)\) và bán kính \(R = \frac{5}{{\sqrt 6 }}\)
\( \Leftrightarrow \frac{{\left| {6 - 1} \right|}}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = \frac{5}{{\sqrt 6 }} \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = 6\).
Áp dụng BĐT Bunhiacopxki, ta có:
\(\left( {{2^2} + {1^2} + {1^2}} \right)\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) \ge {\left( {\frac{2}{a} + \frac{1}{b} + \frac{1}{c}} \right)^2} = {6^2} \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge 6.\)
Dấu xảy ra \[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{2}{{\frac{1}{a}}} = \frac{1}{{\frac{1}{b}}} = \frac{1}{{\frac{1}{c}}}}\\{\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{2}}\\{b = c = 1}\end{array}} \right.} \right.\]. Khi đó \({V_{{\rm{OABC }}}} = \frac{1}{6}abc = \frac{1}{{12}}\).
Đáp án: \(\frac{1}{{12}}\).
Câu 47
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh 4, mặt bên \[SAB\] đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \[B\] đến mặt phẳng \(\left( {SAC} \right)\) là \(\frac{{a\sqrt b }}{c}\). Tính \(a + b + c\).
Đáp án: ……….
Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh 4, mặt bên \[SAB\] đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \[B\] đến mặt phẳng \(\left( {SAC} \right)\) là \(\frac{{a\sqrt b }}{c}\). Tính \(a + b + c\).
Đáp án: ……….
Lời giải
![Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh 4, mặt bên \[SAB\] đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách từ \[B\] đến mặt phẳng \(\left( {SAC} \right)\) là \(\frac{{a\sqrt b }}{c}\). Tính \(a + b + c\). Đáp án: ………. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid9-1722817079.png)
Kẻ \(SH \bot AB\) nên \(H\) là trung điểm của \[AB.\]
Do \(\left( {SAB} \right) \bot \left( {ABCD} \right) = AB\) và \(\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\) nên từ \(SH \bot AB\) ta được \(SH \bot (ABCD)\).
Mặt khác ta có \(BA \cap \left( {SAC} \right) = \left\{ A \right\}\) và H là trung điểm của AB nên ta có \(d\left( {B,\left( {SAC} \right)} \right) = 2d\left( {H,\left( {SAC} \right)} \right)\).
Trong \(\left( {ABCD} \right)\) kẻ \(HK \bot AC\,\,(K \in AC)\) và trong \((SHK)\) kẻ \(HE \bot SK\,(E \in SK)\).
Ta có: \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot AC\)
Kết hợp với \(HK \bot AC\) ta được \(AC \bot (SHK) \Rightarrow AC \bot HE\).
Hơn nữa \(HE \bot SK\) nên \(HE \bot \left( {SAC} \right)\).
Vậy \(d\left( {H,\left( {SAC} \right)} \right) = HE \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = 2HE\).
Trong \(\left( {ABCD} \right)\) ta có .
Mặt khác dễ thấy \(SH = \frac{{4\sqrt 3 }}{2} = 2\sqrt 3 \). Áp dụng hệ thức lượng trong \(\Delta SHK\), ta có:
\(\frac{1}{{H{E^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{S{H^2}}} \Rightarrow HE = \frac{{2\sqrt {21} }}{7} \Rightarrow d\left( {B,\left( {SAC} \right)} \right) = \frac{{4\sqrt {21} }}{7}{\rm{.}}\)
Suy ra \(a = 4,\,\,b = 21,\,\,c = 7.\) Vậy \(a + b + c = 32.\)
Đáp án: 32.
Câu 48
Cho các số thực \[a,\,\,b,\,\,x,\,\,y\] thoả mãn \(a > 1\,,\,\,b > 1\) và \({a^{x + y}} = {b^{x - y}} = \sqrt[3]{{ab}}\). Giá trị nhỏ nhất của biểu thức \(P = 6x + 4y - 2\) là \(\frac{{\sqrt m }}{n}\). Tính \(m - 3n\).
Đáp án: ……….
Cho các số thực \[a,\,\,b,\,\,x,\,\,y\] thoả mãn \(a > 1\,,\,\,b > 1\) và \({a^{x + y}} = {b^{x - y}} = \sqrt[3]{{ab}}\). Giá trị nhỏ nhất của biểu thức \(P = 6x + 4y - 2\) là \(\frac{{\sqrt m }}{n}\). Tính \(m - 3n\).
Đáp án: ……….
Lời giải
Từ giả thiết \({a^{x + y}} = {b^{x - y}} = \sqrt[3]{{ab}} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = {{\log }_a}\sqrt[3]{{ab}} = \frac{1}{3}\left( {1 + {{\log }_a}b} \right)}\\{x - y = {{\log }_b}\sqrt[3]{{ab}} = \frac{1}{3}\left( {1 + {{\log }_b}a} \right)}\end{array}} \right.\).
Đặt \({\log _a}b = t\,\,(t > 0)\). Khi đó \(x = \frac{1}{6}\left( {2 + t + \frac{1}{t}} \right),y = \frac{1}{6}\left( {t - \frac{1}{t}} \right)\).
Suy ra: \(P = 6x + 4y - 2 = 2 + t + \frac{1}{t} + \frac{2}{3}t - \frac{2}{{3t}} - 2 = \frac{5}{3}t + \frac{1}{{3t}} = \frac{1}{3}\left( {5t + \frac{1}{t}} \right) \ge \frac{{2\sqrt 5 }}{3} = \frac{{\sqrt {20} }}{3}\).
Dấu bằng xảy ra khi \(t = \frac{1}{{\sqrt 5 }}\). Suy ra \(m = 20,n = 3 \Rightarrow m - 3n = 11\).
Đáp án: 11.
Câu 49
Gọi \[x,\,\,y,\,\,z\] là chiều dài, chiều rộng và chiều cao của một thùng giấy có dạng hình hộp chữ nhật không có nắp bên trên (hình vẽ). Biết rằng tổng diện tích xung quanh và đáy còn lại của thùng bằng 100 (đơn vị diện tích). Khi chiếc thùng có thể tích lớn nhất thì tổng \({x^2} + {y^2} + {z^2}\) bằng
Đáp án: ……….
Gọi \[x,\,\,y,\,\,z\] là chiều dài, chiều rộng và chiều cao của một thùng giấy có dạng hình hộp chữ nhật không có nắp bên trên (hình vẽ). Biết rằng tổng diện tích xung quanh và đáy còn lại của thùng bằng 100 (đơn vị diện tích). Khi chiếc thùng có thể tích lớn nhất thì tổng \({x^2} + {y^2} + {z^2}\) bằng
Đáp án: ……….
Lời giải
Ta có: \(S = xy + 2xz + 2yz = 100\), thể tích của thùng là \(V = xyz\).
Áp dụng bất đẳng thức Cauchy ta có:
\(\frac{{xy + 2xz + 2yz}}{3} \ge \sqrt[3]{{4{x^2}{y^2}{z^2}}} \Rightarrow {\left( {\frac{S}{3}} \right)^3} \ge 4{x^2}{y^2}{z^2} = 4{V^2} \Rightarrow V \le \frac{1}{2}\sqrt {{{\left( {\frac{S}{3}} \right)}^3}} \).
Dấu xảy ra \( \Leftrightarrow xy = 2xz = 2yz = \frac{S}{3} \Leftrightarrow x = y = 2z = \sqrt {\frac{S}{3}} \)
\( \Rightarrow {x^2} + {y^2} + {z^2} = \frac{3}{4} \cdot S = \frac{3}{4} \cdot 100 = 75\).
Đáp án: 75.
Câu 50
Trong không gian \[Oxyz,\] cho điểm \(M\left( {1\,;\,\,\frac{1}{2}\,;\,\,0} \right)\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4.\) Đường thẳng \[d\] thay đổi, đi qua điểm \[M,\] cắt mặt cầu \(\left( S \right)\) tại hai điểm \[A,\,\,B\] phân biệt. Gọi \[S\] diện tích của tam giác \[OAB.\] Khi đó \(S_{\max }^2\) bằng bao nhiêu?
Đáp án: ……….
Trong không gian \[Oxyz,\] cho điểm \(M\left( {1\,;\,\,\frac{1}{2}\,;\,\,0} \right)\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4.\) Đường thẳng \[d\] thay đổi, đi qua điểm \[M,\] cắt mặt cầu \(\left( S \right)\) tại hai điểm \[A,\,\,B\] phân biệt. Gọi \[S\] diện tích của tam giác \[OAB.\] Khi đó \(S_{\max }^2\) bằng bao nhiêu?
Đáp án: ……….
Lời giải
![Trong không gian \[Oxyz,\] cho điểm \(M\left( {1\,;\,\,\frac{1}{2}\,;\,\,0} \right)\) và mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} = 4.\) Đường thẳng \[d\] thay đổi, đi qua điểm \[M,\] cắt mặt cầu \(\left( S \right)\) tại hai điểm \[A,\,\,B\] phân biệt. Gọi \[S\] diện tích của tam giác \[OAB.\] Khi đó \(S_{\max }^2\) bằng bao nhiêu? Đáp án: ………. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid10-1722817205.png)
Mặt cầu \((S)\) có tâm \(O(0;0;0)\) và bán kính \(R = 2\).
Ta có: \(OM = \sqrt {1 + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 5 }}{2}\) nên M nằm trong mặt cầu \((S)\).
Ta có: \({S_{OAB}} = \frac{1}{2}AB \cdot d(O;d) = AH \cdot OH = \sqrt {4 - O{H^2}} \cdot OH\).
Vì \(OH \le OM\) nên diện tích \({\rm{AOB}}\) lớn nhất
\( \Leftrightarrow OH = OM \Leftrightarrow OM \bot AB\).
Khi đó \({S_{\max }} = \sqrt {4 - O{M^2}} \cdot OM = \frac{{\sqrt {55} }}{4} \Rightarrow {S_{{{\max }^2}}} = \frac{{55}}{{16}}\).
Đáp án: \(\frac{{55}}{{16}}\).
Câu 51
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong lịch sử, nhân dân ta đã đánh đuổi mọi chế độ xâm lược đất nước ta như Mông Cổ, Nhật, Pháp, Mĩ...
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong lịch sử, nhân dân ta đã đánh đuổi mọi chế độ xâm lược đất nước ta như Mông Cổ, Nhật, Pháp, Mĩ...
Lời giải
Từ “chế độ” dùng sai về nghĩa. “Chế độ” là hệ thống tổ chức chính trị, kinh tế… của xã hội, không thể thực hiện hành động xâm lược. Từ đúng là “kẻ thù”, “thế lực”,… Chọn C.
Câu 52
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Chim sâu rất có ích cho nông dân để nó diệt sâu phá hoại mùa màng.
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Chim sâu rất có ích cho nông dân để nó diệt sâu phá hoại mùa màng.
Lời giải
Quan hệ từ “để” dùng trong câu không thích hợp về nghĩa. Sửa: Thay từ “để” bằng từ “vì”. Chọn C.
Câu 53
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Ở dưới gần cụm lá sả, hai ba chú mái tơ thi nhau dụi đất, thỉnh thoảng lại rũ cánh phành phạch.
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Ở dưới gần cụm lá sả, hai ba chú mái tơ thi nhau dụi đất, thỉnh thoảng lại rũ cánh phành phạch.
Lời giải
Từ viết sai chính tả “dụi đất”. Sửa lại “rụi đất”. Chọn B.
Câu 54
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Mĩ phẩm là ngành hàng kinh doanh béo bổ.
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Mĩ phẩm là ngành hàng kinh doanh béo bổ.
Lời giải
Từ “béo bổ” dùng sai về nghĩa. “Béo bổ” là có tác dụng tốt đối với sức khỏe con người. Từ đúng là “béo bở”. Chọn D.
Câu 55
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Ngôi chùa mang trong nó bao nhiêu sự tích, bao nhiêu huyền thoại và đã chứng minh bao biến thiên của kinh kì.
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Ngôi chùa mang trong nó bao nhiêu sự tích, bao nhiêu huyền thoại và đã chứng minh bao biến thiên của kinh kì.
Lời giải
Từ “chứng minh” dùng chưa hợp lí, nên thay bằng “chứng kiến”. Chọn C.
Lời giải
“hoa quả” là từ ghép đẳng lập, các từ còn lại đều là từ ghép chính phụ. Chọn B.
Lời giải
Từ “mặt” trong “rửa mặt” dùng với nghĩa gốc, các từ còn lại dùng với nghĩa chuyển. Chọn A.
Lời giải
“Khẩn khoản” là tỏ ra tha thiết, nài nỉ để người khác chấp nhận đề nghị của mình. Các từ còn lại biểu thị sự cần thiết, cấp bách, phải giải quyết nhanh, không được chậm trễ. Chọn A.
Lời giải
“Róc rách” biểu thị âm thanh của nước chảy. Các từ còn lại biểu thị âm thanh của mưa rơi. Chọn D.
Lời giải
“Rừng xà nu” thuộc thể loại truyện, các tác phẩm còn lại thuộc thể loại thơ. Chọn C.
Câu 61
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
___________ môi trường là trách nhiệm của toàn xã hội.
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
___________ môi trường là trách nhiệm của toàn xã hội.
Lời giải
Bảo vệ môi trường là trách nhiệm của toàn xã hội. Chọn A.
Câu 62
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Mầm mống đại họa bắt nguồn từ việc ________ những tội lỗi, sai trái và tiêu cực.
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Mầm mống đại họa bắt nguồn từ việc ________ những tội lỗi, sai trái và tiêu cực.
Lời giải
“Bao che” là che giấu tội lỗi, khuyết điểm cho người nào đó. “Che chở” là bảo vệ người nào đó khỏi khó khăn, nguy hiểm. “Che chắn” là giúp đỡ, bảo vệ người nào đó khỏi sự tấn công. “Bao bọc” là giúp đỡ, yêu thương, gắn bó với người khác. Từ thích hợp nhất kết hợp với “những tội lỗi, sai trái và tiêu cực” ở trong câu là từ “bao che”. Chọn A.
Câu 63
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Lá cây thì ________ mịn màng còn thân cây lại xù xì, gai góc.
Điền từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Lá cây thì ________ mịn màng còn thân cây lại xù xì, gai góc.
Lời giải
Lá cây thì mềm mại mịn màng còn thân cây lại xù xì, gai góc. Chọn A.
Câu 64
Chọn từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Bộ Ngoại giao Hoa Kì xử lí rất nghiêm những cáo buộc về _______ giả mạo hoặc sai phạm trong quy trình xử lí thị thực.
Chọn từ/ cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Bộ Ngoại giao Hoa Kì xử lí rất nghiêm những cáo buộc về _______ giả mạo hoặc sai phạm trong quy trình xử lí thị thực.
Lời giải
Bộ Ngoại giao Hoa Kì xử lí rất nghiêm những cáo buộc về hành vi giả mạo hoặc sai phạm trong quy trình xử lí thị thực. Chọn C.
Câu 65
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Bầu trời đêm ________ ánh sao.
Chọn từ/cụm từ thích hợp nhất để điền vào chỗ trống trong câu dưới đây:
Bầu trời đêm ________ ánh sao.
Lời giải
Từ “lấp lánh” dùng để chỉ ánh sao là hợp lí hơn cả. Chọn B.
Câu 66
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trích Trong lời mẹ hát – Trương Nam Hương)
Lũ chúng tôi từ tay mẹ lớn lên
Còn những bí và bầu thì lớn xuống
Chúng mang dáng giọt mồ hôi mặn
Rỏ xuống lòng thầm lặng mẹ tôi
(Trích Mẹ và quả – Nguyễn Khoa Điềm)
Cả hai đoạn thơ trên đều sử dụng phương thức biểu đạt chính nào?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Thời gian chạy qua tóc mẹ
Một màu trắng đến nôn nao
Lưng mẹ cứ còng dần xuống
Cho con ngày một thêm cao.
(Trích Trong lời mẹ hát – Trương Nam Hương)
Lũ chúng tôi từ tay mẹ lớn lên
Còn những bí và bầu thì lớn xuống
Chúng mang dáng giọt mồ hôi mặn
Rỏ xuống lòng thầm lặng mẹ tôi
(Trích Mẹ và quả – Nguyễn Khoa Điềm)
Lời giải
Hai đoạn thơ thuộc thể loại trữ tình, phương thức biểu đạt chính là biểu cảm. Chọn A.
Câu 67
Đọc đoạn trích sau đây và trả lời câu hỏi:
Bộ GD&ĐT cho hay quy trình xây dựng ngân hàng câu hỏi thi chuẩn hóa được thực hiện nghiêm ngặt với yêu cầu bảo mật nội bộ chặt chẽ để bảo đảm chất lượng câu hỏi thi và tính khoa học khách quan trong ra đề thi. Cục Quản lí Chất lượng đã xây dựng quy trình bảo mật và chỉ đạo Trung tâm Khảo thí quốc gia quán triệt áp dụng ngay trong từng công đoạn của quy trình 9 bước.
(Nguồn Internet)
Trong đoạn văn trên, từ “ngân hàng” được dùng với ý nghĩa gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Bộ GD&ĐT cho hay quy trình xây dựng ngân hàng câu hỏi thi chuẩn hóa được thực hiện nghiêm ngặt với yêu cầu bảo mật nội bộ chặt chẽ để bảo đảm chất lượng câu hỏi thi và tính khoa học khách quan trong ra đề thi. Cục Quản lí Chất lượng đã xây dựng quy trình bảo mật và chỉ đạo Trung tâm Khảo thí quốc gia quán triệt áp dụng ngay trong từng công đoạn của quy trình 9 bước.
(Nguồn Internet)
Lời giải
Từ “ngân hàng” được dùng trong đoạn văn được dùng với nghĩa chỉ tập hợp các dữ liệu liên quan đến một lĩnh vực nào đó mà ở đây là câu hỏi thi phục vụ mục tiêu giáo dục. Chọn C.
Câu 68
Đọc đoạn trích sau đây và trả lời câu hỏi:
Gió theo lối gió, mây đường mây
Dòng nước buồn thiu hoa bắp lay
Thuyền ai đậu bến sông trăng đó
Có chở trăng về kịp tối nay?
(Đây thôn Vĩ Dạ – Hàn Mặc Tử)
Câu hỏi “Có chở trăng về kịp tối nay?” trong đoạn trích thể hiện tâm trạng nào của nhân vật trữ tình?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Gió theo lối gió, mây đường mây
Dòng nước buồn thiu hoa bắp lay
Thuyền ai đậu bến sông trăng đó
Có chở trăng về kịp tối nay?
(Đây thôn Vĩ Dạ – Hàn Mặc Tử)
Lời giải
Câu hỏi “Có chở trăng về kịp tối nay?” trong đoạn trích thể hiện niềm hi vọng, khắc khoải, phấp phỏng của thi sĩ. Chọn A.
Câu 69
Đọc đoạn trích sau và trả lời câu hỏi:
Người Việt Nam có thể coi là ít tinh thần tôn giáo. Họ coi trọng hiện thế trần tục hơn thế giới bên kia. Không phải người Việt Nam không mê tín, họ tin có linh hồn, ma quỷ, thần Phật. Nhiều người thực hành cầu cúng. Nhưng về tương lai, họ lo cho con cháu hơn là linh hồn của mình.
(Nhìn về vốn văn hóa dân tộc – Trần Đình Hượu)
Từ “hiện thế” trong đoạn trích trên biểu đạt nội dung nào?
Đọc đoạn trích sau và trả lời câu hỏi:
Người Việt Nam có thể coi là ít tinh thần tôn giáo. Họ coi trọng hiện thế trần tục hơn thế giới bên kia. Không phải người Việt Nam không mê tín, họ tin có linh hồn, ma quỷ, thần Phật. Nhiều người thực hành cầu cúng. Nhưng về tương lai, họ lo cho con cháu hơn là linh hồn của mình.
(Nhìn về vốn văn hóa dân tộc – Trần Đình Hượu)
Lời giải
“hiện thế”: Cuộc đời hiện tại. Chọn A.
Câu 70
Đọc đoạn trích sau đây và trả lời câu hỏi:
Cuộc sống quê tôi gắn bó với cây cọ. Cha làm cho tôi chiếc chổi cọ để quét nhà, quét sân. Mẹ đựng hạt giống đầy móm lá cọ, treo lên gác bếp để gieo cấy mùa sau. Chị tôi đan nón lá cọ, lại biết đan cả mành cọ và làn cọ xuất khẩu. Chiều chiều chăn trâu, chúng tôi rủ nhau đi nhặt những trái cọ rơi đầy quanh gốc về om, ăn vừa béo vừa bùi.
(Theo Nguyễn Thái Vận)
Nhận xét về cách thức trình bày đoạn văn:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Cuộc sống quê tôi gắn bó với cây cọ. Cha làm cho tôi chiếc chổi cọ để quét nhà, quét sân. Mẹ đựng hạt giống đầy móm lá cọ, treo lên gác bếp để gieo cấy mùa sau. Chị tôi đan nón lá cọ, lại biết đan cả mành cọ và làn cọ xuất khẩu. Chiều chiều chăn trâu, chúng tôi rủ nhau đi nhặt những trái cọ rơi đầy quanh gốc về om, ăn vừa béo vừa bùi.
(Theo Nguyễn Thái Vận)
Lời giải
Đây là đoạn văn diễn dịch vì câu chủ đề ở đầu đoạn: “Cuộc sống quê tôi gắn bó với cây cọ”, những câu sau triển khai ý của câu chủ đề. Chọn A.
Câu 71
Đọc đoạn trích sau đây và trả lời câu hỏi:
Trước muôn trùng sóng bể
Em nghĩ về anh, em
Em nghĩ về biển lớn
Từ nơi nào sóng lên
(Sóng – Xuân Quỳnh)
Đoạn trích thể hiện trạng thái nào của nhân vật “em”?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Trước muôn trùng sóng bể
Em nghĩ về anh, em
Em nghĩ về biển lớn
Từ nơi nào sóng lên
(Sóng – Xuân Quỳnh)
Lời giải
Trạng thái suy tư: nghĩ về anh, em; nghĩ về biển lớn,… Chọn C.
Câu 72
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mùa hè năm nọ, bão vào Hà Nội gào rú một đêm, sáng ra mở cửa nhìn ra đền Ngọc Sơn mà hãi. Cây si cổ thụ đổ nghiêng, tán cây đè lên hậu cung, một phần bộ rễ bật đất chổng ngược lên trời. Lập tức cô nghĩ ngay đến sự khác thường, sự dời đổi, điềm xấu, là sự ra đi của một thời. Với người già, bất kể ai, cái thời đã qua luôn là thời vàng son, Mỗi thế hệ đều có thời vàng son của họ. Hà Nội thì không thế. Thời nào nó cũng đẹp, một vẻ đẹp riêng cho mỗi lứa tuổi. Cô nói với tôi thế, đã biết nói thế đâu phải đã già. Mấy ngày sau, cô kể tiếp, thành phố cho máy cẩu tới đặt bên kia bờ quàng dây tời vào thân cây si rồi kéo dần lên, mỗi ngày một tí. Sau một tháng, cây si lại sống, lại trổ ra lá non, vẫn là cây si của nhiều thế hệ Hà Nội, nghĩ cứ lạ, tưởng là chết đứt bổ ra làm củi, mà lại sống. Cô nói thêm: “Thiên địa tuần hoàn, cái vào ra của tạo vật không thể lường trước được”. Cô muốn mở rộng sự tính toán vốn dĩ rất khôn ngoan của mình lên thêm một tầng nữa chăng... Bà già vẫn giỏi quá, bà khiêm tốn và rộng lượng quá. Một người như cô phải chết đi thật tiếc, lại một hạt bụi vàng của Hà Nội rơi xuống chìm sâu vào lớp đất cổ. Những hạt bụi vàng lấp lánh đâu đó ở mỗi góc phố Hà Nội hãy mượn gió mà bay lên cho đất kinh kì chói sáng những ánh vàng.
(Một người Hà Nội – Nguyễn Khải)
Trong đoạn trích trên, tác giả đã ví nhân vật “cô” với hình ảnh nào?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mùa hè năm nọ, bão vào Hà Nội gào rú một đêm, sáng ra mở cửa nhìn ra đền Ngọc Sơn mà hãi. Cây si cổ thụ đổ nghiêng, tán cây đè lên hậu cung, một phần bộ rễ bật đất chổng ngược lên trời. Lập tức cô nghĩ ngay đến sự khác thường, sự dời đổi, điềm xấu, là sự ra đi của một thời. Với người già, bất kể ai, cái thời đã qua luôn là thời vàng son, Mỗi thế hệ đều có thời vàng son của họ. Hà Nội thì không thế. Thời nào nó cũng đẹp, một vẻ đẹp riêng cho mỗi lứa tuổi. Cô nói với tôi thế, đã biết nói thế đâu phải đã già. Mấy ngày sau, cô kể tiếp, thành phố cho máy cẩu tới đặt bên kia bờ quàng dây tời vào thân cây si rồi kéo dần lên, mỗi ngày một tí. Sau một tháng, cây si lại sống, lại trổ ra lá non, vẫn là cây si của nhiều thế hệ Hà Nội, nghĩ cứ lạ, tưởng là chết đứt bổ ra làm củi, mà lại sống. Cô nói thêm: “Thiên địa tuần hoàn, cái vào ra của tạo vật không thể lường trước được”. Cô muốn mở rộng sự tính toán vốn dĩ rất khôn ngoan của mình lên thêm một tầng nữa chăng... Bà già vẫn giỏi quá, bà khiêm tốn và rộng lượng quá. Một người như cô phải chết đi thật tiếc, lại một hạt bụi vàng của Hà Nội rơi xuống chìm sâu vào lớp đất cổ. Những hạt bụi vàng lấp lánh đâu đó ở mỗi góc phố Hà Nội hãy mượn gió mà bay lên cho đất kinh kì chói sáng những ánh vàng.
(Một người Hà Nội – Nguyễn Khải)
Lời giải
Dựa vào câu: Một người như cô phải chết đi thật tiếc, lại một hạt bụi vàng của Hà Nội rơi xuống chìm sâu vào lớp đất cổ. Chọn C.
Câu 73
Đọc đoạn trích sau đây và trả lời câu hỏi:
Trong hoàn cảnh “trăm dâu đổ đầu tằm”, ta càng thấy chị Dậu thật là một người phụ nữ đảm đang, tháo vát. Một mình chị phải giải quyết mọi khó khăn đột xuất của gia đình, phải đương đầu với những thế lực tàn bạo: quan lại, cường hào, địa chủ và tay sai của chúng. Chị có khóc lóc, có kêu trời, nhưng chị không nhắm mắt khoanh tay, mà tích cực tìm cách cứu được chồng ra khỏi cơn hoạn nạn. Hình ảnh chị Dậu hiện lên vững chãi như một chỗ dựa chắc chắn của cả gia đình.
(Nguyễn Đăng Mạnh)
Nhận xét về cách thức trình bày đoạn văn:
Đọc đoạn trích sau đây và trả lời câu hỏi:
Trong hoàn cảnh “trăm dâu đổ đầu tằm”, ta càng thấy chị Dậu thật là một người phụ nữ đảm đang, tháo vát. Một mình chị phải giải quyết mọi khó khăn đột xuất của gia đình, phải đương đầu với những thế lực tàn bạo: quan lại, cường hào, địa chủ và tay sai của chúng. Chị có khóc lóc, có kêu trời, nhưng chị không nhắm mắt khoanh tay, mà tích cực tìm cách cứu được chồng ra khỏi cơn hoạn nạn. Hình ảnh chị Dậu hiện lên vững chãi như một chỗ dựa chắc chắn của cả gia đình.
(Nguyễn Đăng Mạnh)
Lời giải
Đoạn văn tổng phân hợp. Câu mở đầu đoạn văn trên nêu lên một nhận định chung về nhân vật. Các câu khác khai triển đoạn đưa ra các biểu hiện cụ thể minh họa cho nhận định chung ấy. Từ những chứng cớ cụ thể này, câu kết đoạn đúc kết thành một nhận định mới vừa phù hợp với nhận định ban đầu, vừa được nâng cao hơn. Chọn C.
Câu 74
Đọc đoạn trích sau và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được.
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
(Hồn Trương Ba da hàng thịt – Lưu Quang Vũ)
Đoạn trích thể hiện ý thức sâu sắc của Trương Ba về vấn đề gì?
Đọc đoạn trích sau và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được.
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
(Hồn Trương Ba da hàng thịt – Lưu Quang Vũ)
Lời giải
Dựa vào câu: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn → Con người phải sống chân thật, là chính mình. Chọn C.
Câu 75
Đọc đoạn trích sau đây và trả lời câu hỏi:
Nhưng bây giờ thì hắn tỉnh. Hắn bâng khuâng như tỉnh dậy, hắn thấy miệng đắng, lòng mơ hồ buồn. Người thì bủn rủn, chân tay không buồn nhấc, hay là đói rượu, hắn hơi rùng mình. Ruột gan lại nôn nao lên một tí. Hắn sợ rượu cũng như những người ốm sợ cơm. Tiếng chim hót ngoài kia vui vẻ quá! Có tiếng cười nói của những người đi chợ. Anh thuyền chài gõ mái chèo đuổi cá.
(Chí Phèo – Nam Cao)
Những âm thanh như “tiếng chim hót”, “tiếng cười nói”, tiếng “anh thuyền chài gõ mái chèo” được miêu tả để ngụ ý cho điều gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Nhưng bây giờ thì hắn tỉnh. Hắn bâng khuâng như tỉnh dậy, hắn thấy miệng đắng, lòng mơ hồ buồn. Người thì bủn rủn, chân tay không buồn nhấc, hay là đói rượu, hắn hơi rùng mình. Ruột gan lại nôn nao lên một tí. Hắn sợ rượu cũng như những người ốm sợ cơm. Tiếng chim hót ngoài kia vui vẻ quá! Có tiếng cười nói của những người đi chợ. Anh thuyền chài gõ mái chèo đuổi cá.
(Chí Phèo – Nam Cao)
Lời giải
Câu 76
Đọc đoạn trích sau đây và trả lời câu hỏi:
NGƯỜI TIỀU PHU
Tiều phu cùng học giả đang đi chung một chiếc thuyền ở giữa sông. Học giả tự nhận mình hiểu biết sâu rộng nên đã đề nghị chơi trò đoán chữ để cho đỡ nhàm chán, đồng thời giao kèo, nếu mà mình thua sẽ mất cho tiều phu mười đồng. Ngược lại, tiều phu thua thì sẽ chỉ mất năm đồng thôi. Học giả coi như mình nhường tiều phu để thể hiện trí tuệ hơn người.
Đầu tiên, tiều phu ra câu đố:
– Vật gì ở dưới sông nặng một ngàn cân, nhưng khi lên bờ chỉ còn có mười cân?
Học giả vắt óc suy nghĩ vẫn tìm không ra câu trả lời, đành đưa cho tiều phu mười đồng. Sau đó, ông hỏi tiều phu câu trả lời là gì.
– Tôi cũng không biết! - Tiều phu đưa lại cho học giả năm đồng và nói thêm:
– Thật ngại quá, tôi kiếm được năm đồng rồi. Học giả vô cùng sửng sốt.
Nội dung chính của câu chuyện trên là gì?
Đọc đoạn trích sau đây và trả lời câu hỏi:
NGƯỜI TIỀU PHU
Tiều phu cùng học giả đang đi chung một chiếc thuyền ở giữa sông. Học giả tự nhận mình hiểu biết sâu rộng nên đã đề nghị chơi trò đoán chữ để cho đỡ nhàm chán, đồng thời giao kèo, nếu mà mình thua sẽ mất cho tiều phu mười đồng. Ngược lại, tiều phu thua thì sẽ chỉ mất năm đồng thôi. Học giả coi như mình nhường tiều phu để thể hiện trí tuệ hơn người.
Đầu tiên, tiều phu ra câu đố:
– Vật gì ở dưới sông nặng một ngàn cân, nhưng khi lên bờ chỉ còn có mười cân?
Học giả vắt óc suy nghĩ vẫn tìm không ra câu trả lời, đành đưa cho tiều phu mười đồng. Sau đó, ông hỏi tiều phu câu trả lời là gì.
– Tôi cũng không biết! - Tiều phu đưa lại cho học giả năm đồng và nói thêm:
– Thật ngại quá, tôi kiếm được năm đồng rồi. Học giả vô cùng sửng sốt.
Lời giải
Nội dung chính: Cuộc thi tài của vị học giả và bác tiều phu. Chọn B.
Câu 77
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mụ cho chúng tôi biết, vì sợ thằng bé có thể làm điều gì dại dột đối với bố nó, mụ đã phải gửi nó lên rừng nhờ bố mình nuôi đã nửa năm nay. Ở với ông ngoại, thằng bé sướng hơn ở trên thuyền với bố mẹ. Nhưng hễ rời ra là nó trốn về. Thằng bé tuyên bố với các bác ở xưởng đóng thuyền rằng nó còn có mặt ở dưới biển này thì mẹ nó không bị đánh.
(Chiếc thuyền ngoài xa – Nguyễn Minh Châu)
Vẻ đẹp nào của người đàn bà hàng chài được thể hiện trong đoạn trích?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Mụ cho chúng tôi biết, vì sợ thằng bé có thể làm điều gì dại dột đối với bố nó, mụ đã phải gửi nó lên rừng nhờ bố mình nuôi đã nửa năm nay. Ở với ông ngoại, thằng bé sướng hơn ở trên thuyền với bố mẹ. Nhưng hễ rời ra là nó trốn về. Thằng bé tuyên bố với các bác ở xưởng đóng thuyền rằng nó còn có mặt ở dưới biển này thì mẹ nó không bị đánh.
(Chiếc thuyền ngoài xa – Nguyễn Minh Châu)
Lời giải
Đoạn trích tập trung khắc họa tình yêu thương con tha thiết của người đàn bà hàng chài. Dễ dàng nhận thấy điều này vì xuất phát từ tình yêu thương con mà người đàn bà hàng chài mới gửi thằng Phác - thằng con trai mà mụ yêu thương nhất lên rừng sống với ông ngoại vì mụ sợ rằng thằng bé có thể làm những việc lỗi đạo với bố nó. Chọn C.
Câu 78
Đọc đoạn trích sau đây và trả lời câu hỏi:
Ông Huấn Cao lặng nghĩ một lát rồi mỉm cười: “Về bảo với chủ ngươi, tối nay, lúc nào lính canh về trại nghỉ, thì đem lụa, mực, bút và một bó đuốc xuống đây ta cho chữ. Chữ thì quý thực. Ta nhất sinh không vì vàng ngọc hay quyền thế mà ép mình viết câu đối bao giờ. Đời ta cũng mới viết có hai bộ tứ bình và một bức trung đường cho ba người bạn thân của ta thôi. Ta cảm cái tấm lòng biệt nhỡn liên tài của các người. Nào ta có biết đâu một người như thầy Quản đây mà lại có những sở thích cao quý như vậy. Thiếu chút nữa, ta đã phụ mất một tấm lòng trong thiên hạ”.
(Chữ người tử tù – Nguyễn Tuân)
Phẩm chất nào của nhân vật Huấn Cao được thể hiện trong đoạn trích?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Ông Huấn Cao lặng nghĩ một lát rồi mỉm cười: “Về bảo với chủ ngươi, tối nay, lúc nào lính canh về trại nghỉ, thì đem lụa, mực, bút và một bó đuốc xuống đây ta cho chữ. Chữ thì quý thực. Ta nhất sinh không vì vàng ngọc hay quyền thế mà ép mình viết câu đối bao giờ. Đời ta cũng mới viết có hai bộ tứ bình và một bức trung đường cho ba người bạn thân của ta thôi. Ta cảm cái tấm lòng biệt nhỡn liên tài của các người. Nào ta có biết đâu một người như thầy Quản đây mà lại có những sở thích cao quý như vậy. Thiếu chút nữa, ta đã phụ mất một tấm lòng trong thiên hạ”.
(Chữ người tử tù – Nguyễn Tuân)
Lời giải
Trong đoạn trích trên, nhân vật Huấn Cao hiện lên với tấm lòng nhân hậu, trọng nhân cách, tình nghĩa điều này được thể hiện qua chi tiết Huấn Cao đồng ý cho viên quản ngục (một người biết trân trọng cái tài và nâng niu cái đẹp) chữ. Chọn A.
Câu 79
Đọc đoạn trích sau và trả lời câu hỏi:
Sông Hương là vậy, là dòng sông của thời gian ngân vang, của sử thi viết giữa màu cỏ lá xanh biếc. Khi nghe lời gọi, nó biết cách tự hiến đời mình làm một chiến công, để rồi nó trở về với cuộc sống bình thường, làm một người con gái dịu dàng của đất nước. Thỉnh thoảng, tôi vẫn còn gặp trong những ngày nắng đem ra phơi, một sắc áo cưới của Huế ngày xưa, rất xưa: màu áo điều lục với loại vải vân thưa màu xanh chàm lồng lên một màu đỏ ở bên trong, tạo thành một màu tím ẩn hiện, thấp thoáng theo bóng người, thuở ấy các cô dâu trẻ vẫn mặc sau tiết sương giáng. Đấy cũng chính là màu của sương khói trên sông Hương, giống như tấm voan huyền ảo của tự nhiên, sau đó ẩn giấu khuôn mặt thực của dòng sông...
(Ai đã đặt tên cho dòng sông? – Hoàng Phủ Ngọc Tường)
Tác giả sử dụng biện pháp tu từ nghệ thuật gì trong câu văn: “Khi nghe lời gọi, nó biết cách tự hiến đời mình làm một chiến công, để rồi nó trở về với cuộc sống bình thường, làm một người con gái dịu dàng của đất nước”?
Đọc đoạn trích sau và trả lời câu hỏi:
Sông Hương là vậy, là dòng sông của thời gian ngân vang, của sử thi viết giữa màu cỏ lá xanh biếc. Khi nghe lời gọi, nó biết cách tự hiến đời mình làm một chiến công, để rồi nó trở về với cuộc sống bình thường, làm một người con gái dịu dàng của đất nước. Thỉnh thoảng, tôi vẫn còn gặp trong những ngày nắng đem ra phơi, một sắc áo cưới của Huế ngày xưa, rất xưa: màu áo điều lục với loại vải vân thưa màu xanh chàm lồng lên một màu đỏ ở bên trong, tạo thành một màu tím ẩn hiện, thấp thoáng theo bóng người, thuở ấy các cô dâu trẻ vẫn mặc sau tiết sương giáng. Đấy cũng chính là màu của sương khói trên sông Hương, giống như tấm voan huyền ảo của tự nhiên, sau đó ẩn giấu khuôn mặt thực của dòng sông...
(Ai đã đặt tên cho dòng sông? – Hoàng Phủ Ngọc Tường)
Lời giải
Nhân hóa: nghe lời gọi, tự hiến đời mình, trở về với cuộc sống bình thường, làm một người con gái dịu dàng của đất nước. Chọn C.
Câu 80
Đọc đoạn trích sau đây và trả lời câu hỏi:
Ta đã lớn lên rồi trong khói lửa
Chúng nó chẳng còn mong được nữa
Chặn bàn chân một dân tộc anh hùng
Những bàn chân từ than bụi, lầy bùn
Đã bước dưới mặt trời cách mạng.
Những bàn chân của Hóc Môn, Ba Tơ, Cao Lạng
Lừng lẫy Điện Biên, chấn động địa cầu
Những bàn chân đã vùng dậy đạp đầu
Lũ chúa đất xuống bùn đen vạn kiếp!
Ta đi tới, trên đường ta bước tiếp,
Rắn như thép, vững như đồng.
Đội ngũ ta trùng trùng điệp điệp
Cao như núi, dài như sông
Chí ta lớn như biển Đông trước mặt!
(Trích “Ta đi tới”, Tố Hữu)
Nêu ý nghĩa nội dung của đoạn thơ trên.
Đọc đoạn trích sau đây và trả lời câu hỏi:
Ta đã lớn lên rồi trong khói lửa
Chúng nó chẳng còn mong được nữa
Chặn bàn chân một dân tộc anh hùng
Những bàn chân từ than bụi, lầy bùn
Đã bước dưới mặt trời cách mạng.
Những bàn chân của Hóc Môn, Ba Tơ, Cao Lạng
Lừng lẫy Điện Biên, chấn động địa cầu
Những bàn chân đã vùng dậy đạp đầu
Lũ chúa đất xuống bùn đen vạn kiếp!
Ta đi tới, trên đường ta bước tiếp,
Rắn như thép, vững như đồng.
Đội ngũ ta trùng trùng điệp điệp
Cao như núi, dài như sông
Chí ta lớn như biển Đông trước mặt!
(Trích “Ta đi tới”, Tố Hữu)
Lời giải
Ý nghĩa nội dung: sức mạnh và ý chí kiên cường của nhân dân của một dân tộc anh hùng không bao giờ chịu khuất phục đế quốc xâm lăng. Chọn C.
Câu 81
PHẦN 3: KHOA HỌC
Lĩnh vực: Khoa học tự nhiên và xã hội (50 câu – 60 phút)
Chiến lược toàn cầu của Mĩ sau Chiến tranh thế giới thứ hai có mục tiêu nào sau đây?
PHẦN 3: KHOA HỌC
Lĩnh vực: Khoa học tự nhiên và xã hội (50 câu – 60 phút)
Lời giải
Tháng 3-1947, trong diễn văn đọc trước Quốc hội Mĩ, Tỗng thống Truman công khai tuyên bố: "Sứ mệnh lãnh đạo thế giới tự do chống lại sự bành trướng của chủ nghĩa cộng sản".
- Mục tiêu của "Chiến lược toàn cầu":
+ Ngăn chặn, đẩy lùi và tiến tới tiêu diệt hoàn toàn chủ nghĩa xã hội.
+ Đàn áp phong trào giải phóng dân tộc, phong trào cộng sản và công nhân quốc tế, phong trào chống chiến tranh, vì hòa bình, dân chủ trên thế giới.
+ Khống chế, chi phối các nước đồng minh.
Chọn D.
Câu 82
Phong trào Cần vương ở Việt Nam cuối thế kỉ XIX chấm dứt gắn với sự thất bại của cuộc khởi nghĩa nào sau đây?
Lời giải
Phong trào Cần vương ở Việt Nam cuối thế kỉ XIX chấm dứt gắn với sự thất bại của cuộc khởi nghĩa Hương Khê (1885-1896). Khởi nghĩa Hương Khê cũng là cuộc khởi nghĩa tiêu biểu nhất của phong trào Cần vương. Chọn D.
Câu 83
Nội dung nào sau đây là một trong những yếu tố thúc đẩy kinh tế Nhật Bản phát triến mạnh trong giai đoạn 1952-1973 ?
Lời giải
Một trong những yếu tố thúc đẩy kinh tế Nhật Bản phát triển mạnh trong giai đoạn 1952-1973 là tận dụng tốt yếu tố bên ngoài để phát triển (viện trợ Mĩ, chiến tranh Triều Tiên, Việt Nam...). Chọn D.
Lời giải
Năm 1949, Liên Xô chế tạo thành công bom nguyên tử, phá vỡ thế độc quyển bom nguyên tử của Mĩ. Chọn B.
Câu 85
Một nguyên nhân dẫn đến sự thất bại của phong trào yêu nước theo khuynh hướng dân chủ tư sản ở Việt Nam những năm đầu thế kỉ XX là gì?
Lời giải
Hệ tư tưởng dân chủ tư sản cuối thế kỉ XIX, đầu thế kỉ XX mới xuất hiện tại Việt Nam, đây là một hệ tư tưởng mới với Việt Nam nhưng đã cũ với các quốc gia trên thế giới. Đồng thời giai cấp tư sản Việt Nam ra đời muộn, tiềm lực kinh tế nhỏ bé nên khả năng lãnh đạo còn hạn chế. Từ hai yếu tố đó cho thấy phong phong trào yêu nước theo khuynh hướng dân chủ tư sản thiếu sự lãnh đạo của một giai cấp tiên tiến. Chọn A.
Câu 86
Điểm tương đồng trong quá trình ra đời của Hiệp hội các quốc gia Đông Nam Á (ASEAN) và liên minh khu vực ở Tây Âu (EU) là gi?
Lời giải
Hiệp hội các quốc gia Đông Nam Á (ASEAN) ra đời năm 1967, Liên minh khu vực ở Tây Âu (EU) ra đời từ 1951 1993. Thời gian 2 tổ chức này ra đời là thời điểm Chiến tranh lạnh 1947-1991 đang diễn ra nên cả 2 tổ chức này đều chịu sự chi phối của cục diện thế giới hai cực, hai phe. Chọn C.
Câu 87
Nội dung nào sau đây phản ánh không đúng những điểm tích cực trong Luận cương chính trị của Đảng Cộng sản Đông Dương (10-1930)?
Lời giải
Một trong những hạn chế của Luận cương chính trị của Đảng Cộng sản Đông Dương (10-1930) là đánh giá không đúng khả năng cách mạng của tầng lớp tiểu tư sản, giai cấp tư sản dân tộc, khả năng lôi kéo bộ phận trung, tiểu địa chủ tham gia Mặt trận dân tộc thống nhất, chống đế quốc và phong kiến. Chọn C.
Lời giải
Từ ngày 16 đến ngày 17-8-1945, Đại hội Quốc dân được triệu tập ở Tân Trào. Đại hội tán thành chủ trương Tổng khởi nghĩa của Đảng, thông qua 10 chính sách của Việt Minh, cử ra Uỷ ban Dân tộc giải phóng Việt Nam do Hồ Chí Minh làm Chủ tịch. Chọn D.
Lời giải
Lúa nước là cây lương thực truyền thống và quan trọng của khu vực. Sản lượng lương thực không ngừng tăng, Thái Lan và Việt Nam trở thành những nước đứng hàng đầu thế giới về xuất khẩu gạo. Không chỉ vậy, Đông Nam Á là một khu vực có dân số đông nên nhờ việc phát triển ngành trồng lúa các nước Đông Nam Á đã cơ bản giải quyết được nhu cầu lương thực-vấn đề nan giải của nhiều quốc gia đang phát triển. Chọn C.
Lời giải
Ranh giới tự nhiên giữa hai phần Nga Âu và Nga Á là dãy núi U-ran (sgk Địa lí 11 trang 62) → Chọn D.
Lời giải
Đất feralit nước ta có màu đỏ vàng chủ yếu do sự tích tụ ô-xít sắt và ô-xít nhôm. Chọn D.
Lời giải
Diện tích rừng giàu chiếm tỉ lệ lớn là không đúng với rừng nước ta. Nước ta còn ít rừng giàu. Chọn C.
Câu 93
Căn cứ vào Atlat Địa lí Việt Nam trang Vùng Trung du và miền núi Bắc Bộ, Vùng Đồng bằng sông Hồng, cho biết hoạt động chế biến nông sản được phát triển tại các điểm công nghiệp nào ở Trung du và miền núi Bắc Bộ?
Lời giải
Điện Biên Phủ, Hà Giang, Tuyên Quang. Chọn A.
Câu 94
Cho biểu đồ:
CƠ CẤU LỰC LƯỢNG LAO ĐỘNG TỪ 15 TUỔI TRỞ LÊN
PHÂN THEO THÀNH THỊ VÀ NÔNG THÔN
(Nguồn: gso.gov.vn)
Theo biểu đồ, nhận xét nào sau đây đúng về cơ cấu lực lượng lao động từ 15 tuổi trở lên phân theo thành thị và nông thôn nước ta giai đoạn 2000 2020 ?
Cho biểu đồ:

CƠ CẤU LỰC LƯỢNG LAO ĐỘNG TỪ 15 TUỔI TRỞ LÊN
PHÂN THEO THÀNH THỊ VÀ NÔNG THÔN
(Nguồn: gso.gov.vn)
Theo biểu đồ, nhận xét nào sau đây đúng về cơ cấu lực lượng lao động từ 15 tuổi trở lên phân theo thành thị và nông thôn nước ta giai đoạn 2000 2020 ?
Lời giải
Tính toán cho thấy B là đáp án đúng. Chọn B.
Lời giải
Khai thác hải sản cần nhất yếu tố là ngư trường lớn → Chọn D.
Câu 96
Yếu tố nào sau đây không gây trở ngại đối với việc xây dựng các tuyến đường bộ bắc-nam ở nước ta?
Lời giải
Những đồng bằng hẹp ven biển tạo thuận lợi cho việc xây dựng tuyến đường B-N chứ không gây cản trở. Chọn C.
Lời giải
Cà phê là cây trồng quan trọng nhất của Tây Nguyên. Chọn D.
Câu 98
Việc phát triển cây công nghiệp lâu năm ở Tây Nguyên chủ yếu dựa vào các điều kiện thuận lợi nào sau đây?
Lời giải
Việc phát triển cây công nghiệp lâu năm ở Tây Nguyên chủ yếu dựa vào các điều kiện thuận lợi là khí hậu có tính chất cận xích đạo, đất badan giàu dinh dưỡng. Chọn A.
B. Đất badan có diện tích rộng, giống cây trồng có chất lượng tốt. → thiếu khí hậu.
C. Đất badan ở trên những mặt bằng rộng, nguồn nước dồi dào. → thiếu khí hậu.
D. Khí hậu mát mẻ trên các cao nguyên cao trên 1000 m, đất tốt. → đất tốt chưa chi tiết.
Câu 99
Một bếp điện được sử dụng với hiệu điện thế 220 V thì dòng điện có cường độ 4 A. Dùng bếp này thì đun sôi được 1,5 lít nước từ nhiệt độ ban đầu \(25^\circ {\rm{C}}\) trong thời gian 10 phút. Cho nhiệt dung riêng của nước là c \( = 4200\;{\rm{J}}{\rm{.k}}{{\rm{g}}^{ - 1}}{{\rm{K}}^{ - 1}}.\) Hiệu suất của bếp là
Lời giải
Nhiệt lượng đun nóng nước là \(Q = m.c.\Delta T = 1,5.4200.(100 - 25) = 472500J\)
Nhiệt lượng bếp tỏa ra là \({Q_b} = U.I.t = 220.4 \cdot 10.60 = 528000\;{\rm{J}}\)
Hiệu suất của bếp là \(H = \frac{Q}{{{Q_b}}} = \frac{{472500}}{{528000}} \cdot 100\% = 89,5\% \)
Chọn C.
Câu 100
Hình nào sau đây biểu diễn không đúng vectơ lực từ tác dụng lên đoạn dây dẫn mang dòng điện đặt trong từ trường đều \(\vec B\) ?
Hình nào sau đây biểu diễn không đúng vectơ lực từ tác dụng lên đoạn dây dẫn mang dòng điện đặt trong từ trường đều \(\vec B\) ?

Lời giải
Chọn C.
Câu 101
Khi nước sông hồ trong, ta có thể nhìn thấy tận đáy và tưởng chừng như nó rất cạn. Nhưng thực ra là nó sâu hơn ta tưởng, đó cũng do sự nâng lên của đáy sông, hồ, góc nhìn càng lớn thì độ nâng lên càng cao. Nguyên nhân của hiện tượng này là do
Lời giải
Nguyên nhân của hiện tượng là do khúc xạ ánh sáng. Chọn D.
Câu 102
Công thức liên hệ giữa bước sóng \(\lambda \), tốc độ truyền sóng v và tần số góc \(\omega \) của một sóng cơ hình sin là
Lời giải
Công thức liên hệ giữa bước sóng \(\lambda \), tốc độ truyền sóng v và tần số góc \(\omega \) của một sóng cơ hình sin là \(\lambda = Tv = \frac{{2\pi v}}{\omega }\). Chọn A.
Câu 103
Trong thí nghiệm Y-âng về giao thoa ánh sáng, khe \(S\) cách đều hai khe \({S_1},{S_2}\) và ánh sáng phát ra là ánh sáng đơn sắc có bước sóng \(\lambda = 500\;{\rm{nm}}.\) Trên màn, tại hai điểm \({\rm{M}}\) và \({\rm{N}}\) là các vân tối ở hai phía so với vân sáng trung tâm. Giữa \(M\) và \(N\) có 8 vân sáng. Hiệu khoảng cách \(M{S_1} - M{S_2} = 1,75\,\mu m.\) Hiệu khoảng cách \({\rm{N}}{{\rm{S}}_1} - {\rm{N}}{{\rm{S}}_2}\) có giá trị bằng
Lời giải
Ta có hiệu \(M{S_1} - M{S_2} = 1,75 = (4 - 0,5).500 = 3,5\lambda \)
\( \to {\rm{M}}\) là vân tối thứ 4
Giữa M và N là 8 vân sáng \( \to \) có 3 vân sáng ở bên \(M\)
\( \to \) bên N có 4 vân sáng (không kể vân sáng trung tâm)
\( \to {\rm{N}}\) là vân tối thứ \(5 \to N{S_1} - N{S_2} = - (5 - 0,5).500 = - 2,25(\mu m)\)
Chọn A.
Câu 104
Trong chân không, bức xạ đơn sắc màu vàng có bước sóng là \(0,414\mu {\rm{m}}.\) Lấy \({\rm{h}} = 6,{625.10^{ - 34}};{\rm{c}} = {3.10^8}\) m/s. Năng lượng của photon ứng với bức xạ này có giá trị là
Lời giải
Năng lượng của photon: \(E = \frac{{h.c}}{\lambda } = \frac{{6,625 \cdot {{10}^{ - 34}} \cdot 3 \cdot {{10}^8}}}{{0,414 \cdot {{10}^{ - 6}}}} = 4,{8.10^{ - 19}}J = 3{\rm{eV}}\)
Chọn C.
Câu 105
Để hạn chế tai nạn cho người tham gia giao thông, lực lượng cảnh sát đã được trang bị một số loại máy móc như: súng bắn tốc độ, máy đo âm thanh, máy đo nồng độ cồn, ...Trong đó súng bắn tốc độ là thiết bị chuyên dụng có chức năng tính toán tốc độ của xe trên một đoạn đường nhất định, từ đó xác định phương tiện có vi phạm về tốc độ hay không. Thiết bị này còn có khả năng ghi lại hình ảnh của đối tượng đo. Điều nào sau đây là đúng về súng bắn tốc độ?
Để hạn chế tai nạn cho người tham gia giao thông, lực lượng cảnh sát đã được trang bị một số loại máy móc như: súng bắn tốc độ, máy đo âm thanh, máy đo nồng độ cồn, ...Trong đó súng bắn tốc độ là thiết bị chuyên dụng có chức năng tính toán tốc độ của xe trên một đoạn đường nhất định, từ đó xác định phương tiện có vi phạm về tốc độ hay không. Thiết bị này còn có khả năng ghi lại hình ảnh của đối tượng đo. Điều nào sau đây là đúng về súng bắn tốc độ?

Lời giải
Súng bắn tốc độ có cả máy phát sóng vô tuyến và máy thu sóng vô tuyến. Chọn D.
Câu 106
Dòng điện chạy qua đoạn mạch gồm điện trở \(30\,\Omega \), cuộn cảm thuần và tụ điện mắc nối tiếp có biểu thức \({\rm{i}} = 4\cos 100\pi {\rm{t}}({\rm{A}}).\) Công suất tiêu thụ của đoạn mạch là
Lời giải
\[P = {I^2}R = {\left( {2\sqrt 2 } \right)^2}.30 = 240\,{\rm{W}}\]. Chọn D.
Câu 107
Đồ thị vận tốc của một vật dao động điều hòa có dạng như hình vē. Phương trình li độ dao động của vật nặng là
Đồ thị vận tốc của một vật dao động điều hòa có dạng như hình vē. Phương trình li độ dao động của vật nặng là

Lời giải
Từ đồ thị xác định được: \[\frac{T}{4} = 0,1s \Rightarrow T = 0,4s \Rightarrow \omega = \frac{{2\pi }}{T} = 5\pi \,\,rad/s\]
\[{v_{\max }} = 25\pi = A\omega \Rightarrow A = \frac{{25\pi }}{{5\pi }} = 5\,cm\]
Vận tốc sớm pha hơn li độ góc \[\frac{\pi }{2}rad\] nên tại thời điểm ban đầu vận tốc đang ở biên dương và tiến về VTCB thì khi đó li độ đang ở VTCB và tiến về biên dương \[ \Rightarrow \varphi = - \frac{\pi }{2}rad\]. Chọn A
Câu 108
Một nguồn sóng điểm O tại mặt nước dao động điều hòa theo phương thẳng đứng với tần số \(10\;{\rm{Hz}}.\) Tốc độ truyền sóng trên mặt nước là 40 cm/s. Gọi \(A\) và \(B\) là hai điểm tại mặt nước có vị trí cân bằng cách \({\rm{O}}\) những đoạn \(12\;{\rm{cm}}\) và \(16\;{\rm{cm}}\) mà \({\rm{OAB}}\) là tam giác vuông tại \({\rm{O}}.\) Tại thời điểm mà phần tử tại \({\rm{O}}\) ở vị trí cao nhất thì trên đoạn AB có mấy điểm mà phần tử tại đó đang ở vị trí cân bằng?
Đáp án: ……….
Một nguồn sóng điểm O tại mặt nước dao động điều hòa theo phương thẳng đứng với tần số \(10\;{\rm{Hz}}.\) Tốc độ truyền sóng trên mặt nước là 40 cm/s. Gọi \(A\) và \(B\) là hai điểm tại mặt nước có vị trí cân bằng cách \({\rm{O}}\) những đoạn \(12\;{\rm{cm}}\) và \(16\;{\rm{cm}}\) mà \({\rm{OAB}}\) là tam giác vuông tại \({\rm{O}}.\) Tại thời điểm mà phần tử tại \({\rm{O}}\) ở vị trí cao nhất thì trên đoạn AB có mấy điểm mà phần tử tại đó đang ở vị trí cân bằng?
Đáp án: ……….
Lời giải

Bước sóng truyền đi là \(\lambda = \frac{v}{f} = 4\;{\rm{cm}}\)
Ta có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} \to OH = 9,6\;{\rm{cm}}\)
Tại thời điểm t khi \({\rm{O}}\) đạt vị trí cao nhất thì điểm ở trên \({\rm{AB}}\) đang ở vị trí cân bằng thỏa mãn: \((2k + 1) = \frac{\lambda }{4} = 2k + 1\)
Số điểm ở vị trí cân bằng trên \({\rm{AB}}\) khi \({\rm{O}}\) đạt cực đại thỏa mãn \({\rm{k}}\) là số nguyên
\(\left\{ {\begin{array}{*{20}{l}}{9,6 \le 2k + 1 \le 12}\\{9,6 \le 2k + 1 \le 16}\end{array} \to \left\{ {\begin{array}{*{20}{l}}{k = 5}\\{k = 5,6,7}\end{array} \to k = 5,6,7} \right.} \right.\). Có 3 vị trí.
Đáp án: 3
Câu 109
Vitamin A rất cần thiết cho thị lực và phát triển xương. Một dạng tồn tại phổ biến của vitamin A là retinol có công thức phân tử \({{\rm{C}}_{20}}{{\rm{H}}_{30}}{\rm{O}}\) và chứa một vòng 6 cạnh. Số liên kết \(\pi \) trong một phân tử retinol là
Lời giải
Vitamin A có CTPT \({{\rm{C}}_{20}}{{\rm{H}}_{30}}{\rm{O}}\)
Ta có hệ số: \(k = \frac{{2 \cdot 20 + 2 - 30}}{2} = 6\)
Mà \({\rm{k}} = \pi + {\rm{v}}.\) Ta có \({\rm{v}} = 1 \Rightarrow \) số liên kết π \( = 6 - 1 = 5.\)
Chọn C.
Câu 110
Thí nghiệm sau mô tả quá trình của phản ứng nhiệt nhôm:
Cho các phát biểu sau:
(a) X là Fe nóng chảy và Y là \[A{l_2}{O_3}\]nóng chảy.
(b) Phần khói trắng bay ra là \[A{l_2}{O_{3.}}\]
(c) Dải Mg khi đốt được dùng để khơi mào phản ứng nhiệt nhôm.
(d) Phản ứng giữa Al và \[F{e_2}{O_3}\]là phản ứng tỏa nhiệt, nhiệt độ cao nhất lên đến \[1000^\circ C\].
(e) Phản ứng nhiệt nhôm được sử dụng để điều chế một lượng nhỏ sắt nóng chảy khi hàn đường ray.
Số phát biểu đúng là
Thí nghiệm sau mô tả quá trình của phản ứng nhiệt nhôm:
![Cho các phát biểu sau: (a) X là Fe nóng chảy và Y là \[A{l_2}{O_3}\]nóng chảy. (b) Phần khói trắng bay ra là \[A{l_2}{O_{3.}}\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/08/blobid6-1722820840.png)
Cho các phát biểu sau:
(a) X là Fe nóng chảy và Y là \[A{l_2}{O_3}\]nóng chảy.
(b) Phần khói trắng bay ra là \[A{l_2}{O_{3.}}\]
(c) Dải Mg khi đốt được dùng để khơi mào phản ứng nhiệt nhôm.
(d) Phản ứng giữa Al và \[F{e_2}{O_3}\]là phản ứng tỏa nhiệt, nhiệt độ cao nhất lên đến \[1000^\circ C\].
(e) Phản ứng nhiệt nhôm được sử dụng để điều chế một lượng nhỏ sắt nóng chảy khi hàn đường ray.
Số phát biểu đúng là
Lời giải
Các phát biểu (b), (c), (e) đúng.
Phát biểu (a) không đúng do \[A{l_2}{O_3}\] nóng chảy nhẹ hơn Fe nóng chảy nên nổi lên trên và X là \[A{l_2}{O_3}\] còn Y là Fe.
Phát biểu (d) không đúng vì nhiệt độ cao nhất của phản ứng là hơn 2000oC
Chọn B.
Câu 111
Dung dịch X gồm \[N{a_2}C{O_3}\] và \[NaHC{O_3}\] chưa rõ nồng độ. Để xác định nồng độ các chất trong X ta thực hiện thí nghiệm sau: Thí nghiệm 1: Cho từ từ dung dịch \[Ca{\left( {OH} \right)_2}\]đến dư vào 20 mL dung dịch X thu được 5 gam kết tủa trắng. Thí nghiệm 2: Cho từ từ 400 mL dung dịch HCl 0,1 M vào 20 mL dung dịch X thu được 0,2479 lít \[C{O_2}\] (đkc). Nồng độ mol của \[N{a_2}C{O_3}\]và \[NaHC{O_3}\]lần lượt là
Lời giải
Thí nghiệm 1: \({{\rm{n}}_{{\rm{CaC}}{{\rm{O}}_3}}} = 0,05\;\)mol
\( \Rightarrow {n_{CO_3^{2 - }}} + {n_{HCO_3^ - }} = 0,05\,mol\)
Thí nghiệm 2: \({{\rm{n}}_{{\rm{C}}{{\rm{O}}_2}}} = 0,01\)mol; \({{\rm{n}}_{{\rm{HCl}}}} = 0,04\)mol
\({{\rm{H}}^ + } + {\rm{CO}}_3^{2 - } \to {\rm{HCO}}_3^ - \)
\({\rm{HCO}}_3^ - + {{\rm{H}}^ + } \to {\rm{C}}{{\rm{O}}_2} + {{\rm{H}}_2}{\rm{O}}\)
\( \Rightarrow {n_{CO_3^{2 - }}} = {n_{HCl}} - {n_{C{O_2}}} = 0,04 - 0,01 = 0,03\,\,mol\)
\( \Rightarrow {n_{N{a_2}C{O_3}}} = {n_{CO_3^{2 - }}} = 0,03\,mol\)
Bảo toàn nguyên tố \[{\rm{C}}:{{\rm{n}}_{{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}}} + {{\rm{n}}_{{\rm{NaHC}}{{\rm{O}}_3}}} = {{\rm{n}}_{{\rm{CaC}}{{\rm{O}}_3}}} = 0,05 \Rightarrow {{\rm{n}}_{{\rm{NaHC}}{{\rm{O}}_3}}} = 0,02\]mol
\(\begin{array}{l}{{\rm{C}}_{{\rm{M}}\left( {{\rm{N}}{{\rm{a}}_2}{\rm{C}}{{\rm{O}}_3}} \right)}} = \frac{{0,03}}{{0,02}} = 1,5{\rm{M}}\\{{\rm{C}}_{{\rm{M}}\left( {{\rm{NaHC}}{{\rm{O}}_3}} \right)}} = \frac{{0,02}}{{0,02}} = 1,0{\rm{M}}{\rm{.}}\end{array}\)
Chọn A.
Câu 112
Cho 23,9 gam hỗn hợp glycine và alanine tác dụng hết với dung dịch NaOH, thu được dung dịch chứa 30,5 gam muối. Phần trăm về khối lượng của glycine trong hỗn hợp là
Lời giải
Gọi x, y lần lượt là số mol của glycine và alanine trong hỗn hợp ban đầu
\({{\rm{H}}_2}{\rm{NC}}{{\rm{H}}_2}{\rm{COOH}} + {\rm{NaOH}} \to {{\rm{H}}_2}{\rm{NC}}{{\rm{H}}_2}{\rm{COONa}} + {{\rm{H}}_2}{\rm{O}}\)
\({\rm{C}}{{\rm{H}}_3}{\rm{CH}}\left( {{\rm{N}}{{\rm{H}}_2}} \right){\rm{COOH}} + {\rm{NaOH}} \to {\rm{C}}{{\rm{H}}_3}{\rm{CH}}\left( {{\rm{N}}{{\rm{H}}_2}} \right){\rm{COONa}} + {{\rm{H}}_2}{\rm{O}}\)
\(\)\({n_{hh\,}} = \frac{{30,5 - 23,9}}{{23 - 1}} = 0,3\,mol\)
Giải hệ phương trình: \[\left\{ {\begin{array}{*{20}{l}}{75x + 89y = 23,9}\\{x + y = 0,3}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 0,2}\\{y = 0,1}\end{array}} \right.} \right.(mol)\]
\(\% {m_{{\rm{glycine }}}} = \frac{{0,2 \cdot 75}}{{23,9}}.100\% = 62,76\% {\rm{.}}\)
Chọn B.
Câu 113
Phản ứng điều chế ethyl acetate trong phòng thí nghiệm được mô tả như hình vẽ:
Cho các phát biểu sau:
(a) Ethyl acetate có nhiệt độ sôi thấp nên dễ bị bay hơi khi đun nóng.
(b) \[{H_2}S{O_4}\]đặc vừa làm chất xúc tác, vừa có tác dụng hút nước.
(c) Ethyl acetate qua ống dẫn dưới dạng hơi nên cần làm lạnh bằng nước đá để ngưng tụ.
(d) Phản ứng xảy ra trong thí nghiệm trên được gọi là phản ứng ester hóa.
(e) Để nâng cao hiệu suất phản ứng có thể thay hỗn hợp trong ống nghiệm bằng rượu trắng, giấm ăn và \[{H_2}S{O_4}\]đặc.
Số phát biểu đúng là
Phản ứng điều chế ethyl acetate trong phòng thí nghiệm được mô tả như hình vẽ:

Cho các phát biểu sau:
(a) Ethyl acetate có nhiệt độ sôi thấp nên dễ bị bay hơi khi đun nóng.
(b) \[{H_2}S{O_4}\]đặc vừa làm chất xúc tác, vừa có tác dụng hút nước.
(c) Ethyl acetate qua ống dẫn dưới dạng hơi nên cần làm lạnh bằng nước đá để ngưng tụ.
(d) Phản ứng xảy ra trong thí nghiệm trên được gọi là phản ứng ester hóa.
(e) Để nâng cao hiệu suất phản ứng có thể thay hỗn hợp trong ống nghiệm bằng rượu trắng, giấm ăn và \[{H_2}S{O_4}\]đặc.
Số phát biểu đúng là
Lời giải
Các phát biểu đúng là: (a), (b), (c), (d).
Phát biểu (e) không đúng vì rượu trắng và giấm ăn có nồng độ thấp hơn ethyl alcohol và acetic acid dùng trong thí nghiệm trên \( \Rightarrow \) làm giảm hiệu suất phản ứng.
Chọn A.
Câu 114
Cho hợp chất cao phân tử có cấu tạo như sau:
Hợp chất trên được dùng để sản xuất loại vật liệu polymer nào?
Cho hợp chất cao phân tử có cấu tạo như sau:
Hợp chất trên được dùng để sản xuất loại vật liệu polymer nào?
Lời giải
Nylon-6,6 thu được từ phản ứng trùng ngưng adipic acid với hexamethylenediamine.
Nylon-6,6 thuộc tơ tổng hợp.
Chọn D.
Câu 115
Hòa tan hoàn toàn \({\rm{m}}\)gam hỗn hợp M gồm \({\rm{Mg}},{\rm{Al}}\) và \({\rm{Zn}}\) trong dung dịch \({\rm{HN}}{{\rm{O}}_3}\), thu được dung dịch \({\rm{X}}\) có khối lượng lớn hơn dung dịch \({\rm{HN}}{{\rm{O}}_3}\) ban đầu là \({\rm{m}}\) gam. Cô cạn cẩn thận \({\rm{X}}\), thu được a gam hỗn hợp muối khan Y (trong đó, nguyên tố oxygen chiếm 60,111% về khối lượng). Nhiệt phân toàn bộ Y đến khối lượng không đổi, thu được 18,6 gam hỗn hợp oxide kim loại. Giá trị của a gần nhất với giá trị nào sau đây?
Lời giải
Khối lượng dung dịch \({\rm{X}}\) tăng đúng \({\rm{m}}\) gam so với dung dịch \({\rm{HN}}{{\rm{O}}_3}\) ban đầu, bằng khối lượng hỗn hợp \({\rm{M}}.\)
Þ Sau phản ứng không sinh ra khí \( \Rightarrow {\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\) là sản phẩm khử duy nhất, khi nung \({\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\) bị phân hủy hoàn toàn thành các khí.
Þ 18,6 gam hỗn hợp oxide kim loại gồm MgO, \(A{l_2}{O_3}\), ZnO.
\({{\rm{m}}_{{\rm{O (oxide) }}}} = {{\rm{m}}_{{\rm{oxide }}}} - {{\rm{m}}_{{\rm{KL}}}} = 18,6 - {\rm{m }}({\rm{g}})\)
\( \Rightarrow {{\rm{n}}_{{\rm{O (oxide) }}}} = \frac{{18,6 - m}}{{16}}\,\,(\;{\rm{mol}})\)
Gọi \({n_{N{H_4}N{O_3}}} = x\,mol\)
Các quá trình nhường nhận electron:
\(\mathop {{\rm{Mg}}}\limits^0 \to \mathop {{\rm{Mg}}}\limits^{ + 2} + 2{\rm{e }}\)
\(\mathop {\rm{N}}\limits^{ + 5} + 8{\rm{e}} \to \mathop {\rm{N}}\limits^{ - 3} \)
\(\mathop {{\rm{Al}}}\limits^0 \to \mathop {{\rm{Al}}}\limits^{ + 3} + 3{\rm{e}}\)
\(\mathop {{\rm{Zn}}}\limits^0 \to \mathop {{\rm{Zn}}}\limits^{ + 2} + 2{\rm{e}}\)
\( \Rightarrow {{\rm{n}}_{\rm{e}}} = 2{{\rm{n}}_{{\rm{Mg}}}} + 3{{\rm{n}}_{{\rm{Al}}}} + 2{{\rm{n}}_{{\rm{Zn}}}} = 8{n_{N{H_4}N{O_3}}}\)
\(\begin{array}{l} \Rightarrow {n_e} = 2{n_{O\,\,(oxide)}} \Rightarrow 8x = 2 \cdot \frac{{18,6 - m}}{{16}}\\ \Rightarrow m + 64x = 18,6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\end{array}\)

\(\sum {{n_{O\,\,(Y)}} = 3 \cdot \sum {{n_{NO_3^ - \,\,(Y)}}} } = 3 \cdot (8x + x) = 27x\,(mol)\)
\( \Rightarrow \frac{{27x \cdot 16}}{{m + 576x}} = 0,601\,11\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\)
Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}x = 0,09\\m = 12,84\end{array} \right.\)
\( \Rightarrow a = 12,84 + 576 \cdot 0,09 = 64,68\,gam\)
Vậy a gần với giá trị 65 nhất.
Chọn D.
Câu 116
Thêm từ từ từng giọt sulfuric acid vào dung dịch barium hydroxide đến dư. Độ dẫn điện của dung dịch thay đổi như thế nào?
Lời giải
Ban đầu: \(Ba{(OH)_2} \to B{a^{2 + }} + 2O{H^ - }\)
Þ Có 3 ion.
Khi thêm từ từ \({H_2}S{O_4}\): \(Ba{(OH)_2} + {H_2}S{O_4} \to BaS{O_4} \downarrow + 2{H_2}O\)
Þ Lượng ion giảm dần
Khi thêm dư \({H_2}S{O_4}\): \({H_2}S{O_4} \to 2{H^ + } + SO_4^{2 - }\)
Þ Lượng ion tăng lên.
Vậy độ dẫn điện của dung dịch giảm dần sau đó tăng dần.
Chọn D.
Câu 117
Nitrogen dioxide \(\left( {{\rm{N}}{{\rm{O}}_2}} \right)\) và dinitrogen tetroxide \(\left( {{{\rm{N}}_2}{{\rm{O}}_4}} \right)\) cùng tồn tại ở trạng thái cân bằng theo phương trình sau:
Một ống tiêm chứa hỗn hợp cân bằng của hai khí trên có màu nâu. Tiến hành kéo pít tông, giữ nguyên vị trí của pít tông rồi để yên ống tiêm trong một khoảng thời gian (2-3 phút).
Hiện tượng quan sát được là
Nitrogen dioxide \(\left( {{\rm{N}}{{\rm{O}}_2}} \right)\) và dinitrogen tetroxide \(\left( {{{\rm{N}}_2}{{\rm{O}}_4}} \right)\) cùng tồn tại ở trạng thái cân bằng theo phương trình sau:

Một ống tiêm chứa hỗn hợp cân bằng của hai khí trên có màu nâu. Tiến hành kéo pít tông, giữ nguyên vị trí của pít tông rồi để yên ống tiêm trong một khoảng thời gian (2-3 phút).

Hiện tượng quan sát được là
Lời giải
Ban đầu khi kéo pít tông thì thể tích của hỗn hợp phản ứng tăng, nồng độ các chất giảm, lượng chất có trong hệ sẽ bị loãng ra làm cho hỗn hợp có màu nâu nhạt hơn so với ban đầu. Sau một khoảng thời gian, vì kéo pít tông nên áp suất của hệ giảm, cân bằng sẽ chuyển dịch theo chiều tăng số mol chất khí.
\( \to \) Cân bằng chuyển dịch theo chiều nghịch (chiều tạo khí \({\rm{N}}{{\rm{O}}_2}\) màu nâu đỏ). Từ đó dẫn đến màu của hỗn hợp trở lên đậm hơn.
Chọn A.
Câu 118
Hòa tan hoàn toàn 25,76 gam hỗn hợp X gồm Cu, Fe và một oxide sắt trong 280 gam dung dịch \({\rm{HN}}{{\rm{O}}_3}\) 31,5% thu được dung dịch Y (không chứa \({\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\)) và hỗn hợp khí \({\rm{Z}}\) (trong đó oxygen chiếm 61,276% về khối lượng). Cho 600 mL dung dịch NaOH 2M vào dung dịch Y. Lọc bỏ kết kết tủa, cô cạn dung dịch nước lọc, sau đó nung tới khối lượng không đổi thu được 81,06 gam chất rắn khan. Mặt khác thổi 9,916 lít khí CO (đkc) qua 25,76 gam X nung nóng thu được hỗn hợp khí T có tỉ khối so với He bằng 9,4. Biết rằng trong X, số mol của Fe gấp đôi số mol của oxide Fe. Các phản ứng xảy ra hoàn toàn. Công thức của oxide Fe là
Đáp án: ……….
Hòa tan hoàn toàn 25,76 gam hỗn hợp X gồm Cu, Fe và một oxide sắt trong 280 gam dung dịch \({\rm{HN}}{{\rm{O}}_3}\) 31,5% thu được dung dịch Y (không chứa \({\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\)) và hỗn hợp khí \({\rm{Z}}\) (trong đó oxygen chiếm 61,276% về khối lượng). Cho 600 mL dung dịch NaOH 2M vào dung dịch Y. Lọc bỏ kết kết tủa, cô cạn dung dịch nước lọc, sau đó nung tới khối lượng không đổi thu được 81,06 gam chất rắn khan. Mặt khác thổi 9,916 lít khí CO (đkc) qua 25,76 gam X nung nóng thu được hỗn hợp khí T có tỉ khối so với He bằng 9,4. Biết rằng trong X, số mol của Fe gấp đôi số mol của oxide Fe. Các phản ứng xảy ra hoàn toàn. Công thức của oxide Fe là
Đáp án: ……….
Lời giải
Ta có: \({n_{HN{O_3}}} = 1,4\,mol;\,{n_{NaOH}} = 1,2\,mol;\,{n_{CO}} = 0,4\,mol\)
Nhận thấy: 81,06 gam chất rắn khan bao gồm \(\left\{ \begin{array}{l}NaN{O_2}(x\,mol)\\NaOH\,(y\,mol)\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}x + y = 1,2\\69x + 40y = 81,06\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1,14\\y = 0,06\end{array} \right.(mol)\)
- Xét quá trình: \(0,4\,mol\,CO + X \to \left\{ \begin{array}{l}KL:Cu,\,Fe\\hh\,kh\'i \,T\,(CO,\,C{O_2}),\,{\overline M _T} = 37,6\end{array} \right.\)
Þ Hỗn hợp T bao gồm CO (0,16 mol) và \(C{O_2}\)(0,24 mol)
Þ \({n_{O\,\,(X)}} = {n_{C{O_2}}} = 0,16\,mol\)
Þ \({m_{KL\,\,(X)}} = 25,76 - 0,24 \cdot 16 = 21,92\,gam\)
- Xét quá trình X + \(HN{O_3}\)
\(\left\{ {\begin{array}{*{20}{l}}{{\rm{Cu}}}\\{{\rm{Fe}}}\\{{\rm{O}}:0,24\,\,mol}\end{array}} \right\} = \underbrace {\left\{ {\begin{array}{*{20}{l}}{{\rm{Cu}};{\rm{Fe;}}}\\{({\rm{Fe}},{\rm{O}})}\end{array}} \right\}}_{25,76\,\,{\rm{gam}}} + \underbrace {{\rm{HN}}{{\rm{O}}_3}}_{1,4\;{\rm{mol}}} \to \left\{ {\begin{array}{*{20}{l}}{{\rm{Fe}}{{\left( {{\rm{N}}{{\rm{O}}_3}} \right)}_3}}\\{{\rm{Cu}}{{\left( {{\rm{N}}{{\rm{O}}_3}} \right)}_2}}\\{{\rm{HN}}{{\rm{O}}_3}}\end{array}} \right\} + \{ {\rm{N}},{\rm{O}}\} + {{\rm{H}}_2}{\rm{O}}\)
Từ \(\sum {{{\rm{n}}_{{\rm{N}}{{\rm{O}}_3}^ - {\rm{trong Y}}}}} = 1,14\;{\rm{mol}} \Rightarrow {{\rm{n}}_{{\rm{N}}\,\,({\rm{spk)}}}} = 1,4 - 1,14 = 0,26\;{\rm{mol}};\)
\( \Rightarrow {m_{N\,\,(spk)}} = 0,16 \cdot 14 = 3,64 \Rightarrow {m_{O\,\,(spk)}} = \frac{{3,64 \cdot 0,61276}}{{1 - 0,61276}} \approx 5,76\,gam\)
\( \Rightarrow {{\rm{n}}_{{\rm{O}}\,\,({\rm{spk)}}}} = \frac{{5,76}}{{16}} = 0,36\;{\rm{mol}}.\)

Vậy Y chứa \(\left\{ \begin{array}{l}Fe{(N{O_3})_3}\,(a\,mol)\\Cu{(N{O_3})_2}\,(b\,\,mol)\end{array} \right.\) với \(\sum {{{\rm{n}}_{{\rm{NO}}_3^ - }}} \)trong muối \( = 3a + 2b = 1,06\;{\rm{mol}}.\)
Mà \(\sum {{m_{{\rm{Fe}}\, + \,{\rm{Cu}}}}} = 56a + 64b = 21,92\) gam.
Giải hệ phương trình được: \(a = 0,3\;{\rm{mol}}\) và \(b = 0,08\;{\rm{mol}}.\)
\(25,76\,gam\,X\left\{ \begin{array}{l}Cu:0,08\,mol\\Fe:\,\,c\,mol\\F{e_2}{O_z}:\,d\,mol\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c + 2d = 0,3\\zd = 0,24\end{array} \right.\)
z |
2 |
3 |
\(\frac{8}{3}\) |
Công thức oxide |
FeO |
\(F{e_2}{O_3}\) |
\(F{e_3}{O_4}\) |
\(\)Nhận thấy: Công thức oxide thỏa mãn là \(F{e_3}{O_4}\)
Đáp án: \(F{e_3}{O_4}\)
Lời giải
Sâu bọ hô hấp bằng hệ thống ống khí tách biệt với hệ tuần hoàn → Ở sâu bọ, hệ tuần hoàn hở không thực hiện chức năng vận chuyển chất khí. Chọn D.
Lời giải
Sự khác nhau cơ bản giữa hướng động và ứng động là: hướng động là phản ứng của cơ quan thực vật đối với tác nhân kích thích từ một hướng xác định còn ứng động là phản ứng của cơ quan thực vật đối với tác nhân kích thích không định hướng. Chọn B.
Lời giải
Khi CO2 gặp nước vôi sẽ tạo kết tủa. Do đó, nước vôi được sử dụng trong thí nghiệm này nhằm mục đích chứng minh hô hấp ở thực vật thải CO2. Chọn A.
Lời giải
Đột biến NST có các dạng cơ bản là đột biến cấu trúc NST (mất đoạn, lặp đoạn, đảo đoạn, chuyển đoạn) và đột biến số lượng NST (tự đa bội và dị đa bội). Chọn D.
Lời giải
Các con cừu mang gen sản sinh prôtêin của người trong sữa của chúng (hệ gen của các con cừu này được biến đổi thêm gen mới) là thành tựu của công nghệ gen. Chọn D.
Câu 124
Một quần thể giao phối ở trạng thái cân bằng di truyền, xét một gen có hai alen (A và a), người ta thấy số cá thể đồng hợp trội nhiều gấp 9 lần số cá thể đồng hợp lặn. Tỉ lệ phần trăm số cá thể dị hợp trong quần thể này là
Lời giải
Quần thể giao phối ở trạng thái cân bằng di truyền nên cấu trúc di truyền quần thể tuân theo công thức p2 AA + 2pq Aa + q2 aa =1.
Ta có p2 AA = 9 q2 aa (p, q > 0) → p (A) = 3 q(a) mà p + q = 1 \( \Rightarrow \) p(A) = 0,75; q(a) = 0,25.
\( \Rightarrow \) Tỉ lệ số cá thể dị hợp là 2pq = 2 × 0,75 × 0,25 = 37,5%. Chọn A.
Câu 125
Thành phần axit amin trong chuỗi hemôglôbin của người và tinh tinh giống nhau chứng tỏ người và tinh tinh có quan hệ họ hàng gần gũi. Đây là ví dụ về
Lời giải
Thành phần axit amin trong chuỗi hêmôglôbin của người và tinh tinh giống nhau là bằng chứng sinh học phân tử chứng tỏ người và tinh tinh có chung nguồn gốc. Chọn B.
Câu 126
Một lưới thức ăn đơn giản được mô tả như sau: cào cào, thỏ và nai ăn thực vật; chim sâu ăn cào cào; báo ăn thỏ và nai; mèo rừng ăn thỏ và chim sâu. Trong lưới thức ăn này, sinh vật thuộc bậc dinh dưỡng cấp 1 là
Lời giải
Bậc dinh dưỡng cấp 1 trong lưới thức ăn trên chính là sinh vật sản xuất (thực vật). Chọn C.
Câu 127
Một nhóm nghiên cứu thực hiện thí nghiệm để kiểm chứng mô hình nhân đôi ADN ở vùng nhân của tế bào nhân sơ. Họ đã nuôi một số vi khuẩn E.coli trong môi trường chỉ có nitơ đồng vị nặng (15N). Sau đó, họ chuyển vi khuẩn sang nuôi tiếp năm thế hệ ở môi trường chỉ có nitơ đồng vị nhẹ (14N). Biết số lần nhân lên của vi khuẩn E.coli trong các ống nghiệm là như nhau. Tách ADN sau mỗi thế hệ và thu được kết quả như hình dưới đây. Cho biết X là vị trí của ADN chứa cả hai mạch 15N; Y là vị trí của ADN chứa cả mạch 14N và mạch 15N; Z là vị trí của ADN chứa cả hai mạch 14N.
Theo lí thuyết, có bao nhiêu phát biểu sau đây đúng?
I. Thí nghiệm trên đã kiểm chứng quá trình nhân đôi ADN theo nguyên tắc bán bảo toàn.
II. Nếu một vi khuẩn E. coli được nuôi với các điều kiện thí nghiệm như trên thì luôn có hai mạch ADN chứa 15N ở mỗi thế hệ.
III. Ở thế hệ thứ 4, tỉ lệ ADN ở vị trí Y không thay đổi so với thế hệ thứ 3.
IV. Ở thế hệ thứ 5, tỉ lệ ADN ở vị trí Y so với ADN ở vị trí Z là 1/15.
Một nhóm nghiên cứu thực hiện thí nghiệm để kiểm chứng mô hình nhân đôi ADN ở vùng nhân của tế bào nhân sơ. Họ đã nuôi một số vi khuẩn E.coli trong môi trường chỉ có nitơ đồng vị nặng (15N). Sau đó, họ chuyển vi khuẩn sang nuôi tiếp năm thế hệ ở môi trường chỉ có nitơ đồng vị nhẹ (14N). Biết số lần nhân lên của vi khuẩn E.coli trong các ống nghiệm là như nhau. Tách ADN sau mỗi thế hệ và thu được kết quả như hình dưới đây. Cho biết X là vị trí của ADN chứa cả hai mạch 15N; Y là vị trí của ADN chứa cả mạch 14N và mạch 15N; Z là vị trí của ADN chứa cả hai mạch 14N.

Theo lí thuyết, có bao nhiêu phát biểu sau đây đúng?
I. Thí nghiệm trên đã kiểm chứng quá trình nhân đôi ADN theo nguyên tắc bán bảo toàn.
II. Nếu một vi khuẩn E. coli được nuôi với các điều kiện thí nghiệm như trên thì luôn có hai mạch ADN chứa 15N ở mỗi thế hệ.
III. Ở thế hệ thứ 4, tỉ lệ ADN ở vị trí Y không thay đổi so với thế hệ thứ 3.
IV. Ở thế hệ thứ 5, tỉ lệ ADN ở vị trí Y so với ADN ở vị trí Z là 1/15.
Lời giải
Giả sử ban đầu có 1 phân tử N15 (X).
- Ở ống nghiệm 1: 1 phân tử X nhân đôi 1 lần trong N14 cho 2 phân tử Y.
- Ở ống nghiệm 2: 2 phân tử Y nhân đôi 1 lần trong N14 cho 2 phân tử Y và 2 phân tử Z.
- Ở ống nghiệm 3:
+ 2 phân tử Y nhân đôi 1 lần trong N14 cho 2 phân tử Y và 2 phân tử Z.
+ 2 phân tử Z nhân đôi 1 lần trong N14 cho 4 phân tử Z.
- Ở ống nghiệm 4:
+ 2 phân tử Y nhân đôi 1 lần trong N14 cho 2 phân tử Y và 2 phân tử Z.
+ 6 phân tử Z nhân đôi 1 lần trong N14 cho 12 phân tử Z.
- Ở ống nghiệm 5:
+ 2 phân tử Y nhân đôi 1 lần trong N14 cho 2 phân tử Y và 2 phân tử Z.
+ 14 phân tử Z nhân đôi 1 lần trong N14 cho 28 phân tử Z.
Xét sự đúng – sai của các phát biểu:
I. Đúng. Thí nghiệm trên đã kiểm chứng quá trình nhân đôi ADN theo nguyên tắc bán bảo toàn.
II. Đúng. Nếu một vi khuẩn E. coli được nuôi với các điều kiện thí nghiệm như trên thì luôn có hai mạch ADN chứa N15 ở mỗi thế hệ (mỗi thế hệ đều có 2 phân tử Y).
III. Sai. Tỉ lệ Y thay đổi từ thế hệ 3 (25%) sang thế hệ 4 (12,5%).
IV. Đúng. Ở thế hệ 5, \(\frac{Y}{Z} = \frac{2}{{30}} = \frac{1}{{15}}.\)
Chọn A.
Câu 128
Ở người, bệnh bạch tạng do gen lặn a nằm trên NST thường quy định, bệnh máu khó đông do gen lặn b nằm trên NST giới tính X quy định. Ở một cặp vợ chồng, bên phía người vợ có bố bị bệnh máu khó đông, có bà ngoại và ông nội bị bạch tạng. Bên phía người chồng có bố mẹ đều bình thường, có chú bị bệnh bạch tạng nhưng ông bà nội đều bình thường. Những người khác trong gia đình đều bình thường. Cặp vợ chồng này sinh được một đứa con gái bình thường, xác suất để đứa con này mang alen gây bệnh là bao nhiêu? Biết rằng mẹ của người chồng không mang alen gây bệnh bạch tạng.
Đáp án: ……….
Ở người, bệnh bạch tạng do gen lặn a nằm trên NST thường quy định, bệnh máu khó đông do gen lặn b nằm trên NST giới tính X quy định. Ở một cặp vợ chồng, bên phía người vợ có bố bị bệnh máu khó đông, có bà ngoại và ông nội bị bạch tạng. Bên phía người chồng có bố mẹ đều bình thường, có chú bị bệnh bạch tạng nhưng ông bà nội đều bình thường. Những người khác trong gia đình đều bình thường. Cặp vợ chồng này sinh được một đứa con gái bình thường, xác suất để đứa con này mang alen gây bệnh là bao nhiêu? Biết rằng mẹ của người chồng không mang alen gây bệnh bạch tạng.
Đáp án: ……….
Lời giải
- Quy ước gen: A - bình thường >> a - bị bệnh bạch tạng; B - bình thường >> b - bị máu khó đông. Trong đó, gen quy định bệnh bạch tạng nằm trên NST thường; gen quy định bệnh máu khó đông nằm trên vùng không tương đồng của NST giới tính X.
- Phía người vợ có:
+ Bố bị bệnh máu khó đông XbY \( \Rightarrow \) Vợ có kiểu gen XBXb.
+ Bà ngoại và ông nội bị bạch tạng (aa) \( \Rightarrow \) Bố mẹ vợ đều có kiểu gen Aa \( \Rightarrow \) Kiểu gen của người vợ \[(\frac{1}{3}{\rm{AA : }}\frac{2}{3}{\rm{Aa)}}\] tạo giao tử \((\frac{2}{3}A:\frac{1}{3}a).\)
- Bên phía người chồng có:
+ Bố mẹ đều bình thường, có chú bị bệnh bạch tạng \( \Rightarrow \) Bố chồng có kiểu gen \[(\frac{1}{3}{\rm{AA:}}\frac{2}{3}{\rm{Aa)}}\]; mẹ có kiểu gen AA \( \Rightarrow \) Chồng có kiểu gen \[(\frac{2}{3}{\rm{AA:}}\frac{1}{3}{\rm{Aa)}}\] tạo giao tử với tỉ lệ \[(\frac{5}{6}A:\frac{1}{6}a).\]
+ Người chồng không bị máu khó đông nên có kiểu gen XBY.
- Xác suất kiểu gen của người con gái của cặp vợ chồng trên:
+ Về bệnh bạch tạng: \((\frac{2}{3}A:\frac{1}{3}a) \times (\frac{5}{6}A:\frac{1}{6}a)\) → Xác suất con gái bình thường mang alen gây bệnh bạch tạng là \(\frac{{\frac{2}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{5}{6}}}{{1 - \frac{1}{3} \times \frac{1}{6}}} = \frac{7}{{17}}\) → Xác suất không mang alen bệnh là \[1 - \frac{7}{{17}} = \frac{{10}}{{17}}.\]
+ Về bệnh máu khó đông: XBXb × XBY → Xác suất con gái bình thường không mang alen bệnh là \(\frac{1}{2}.\)
\( \Rightarrow \) Xác suất để đứa con gái bình thường mang alen gây bệnh = 1 - xác suất không mang alen bệnh = \(1 - \frac{{10}}{{17}} \times \frac{1}{2} = \frac{{12}}{{17}} = 70,59\% .\)
Đáp án: 70,59%.
Đoạn văn 1
Đọc đoạn trích sau và trả lời các câu hỏi từ 51 đến 55:
(1) Tây Tiến đoàn binh không mọc tóc
(2) Quân xanh màu lá dữ oai hùm
(3) Mắt trừng gửi mộng qua biên giới
(4) Đêm mơ Hà Nội dáng kiều thơm
(5) Rải rác biên cương mồ viễn xứ
(6) Chiến trường đi chẳng tiếc đời xanh
(7) Áo bào thay chiếu anh về đất
(8) Sông Mã gầm lên khúc độc hành.
(Tây Tiến – Quang Dũng)
Câu 129
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Âm hưởng chủ đạo của toàn bộ đoạn trích là gì?
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Lời giải
Âm hưởng chủ đạo của toàn bộ đoạn trích là bi tráng, kiêu hùng. Chọn A.
Lời giải
Vẻ đẹp người chiến chí Tây Tiến:
+ Hào hùng: đoàn binh không mọc tóc, dữ oai hùm, áo bào thay chiếu anh về đất,…
+ Hào hoa: gửi mộng qua biên giới, đêm mơ Hà Nội dáng kiều thơm,….
→ Chọn B.
Lời giải
Phép nhân hóa “gầm lên”: dùng những từ chỉ hành động của người để chỉ hành động của sự vật. Chọn C.
Lời giải
Câu thơ “Quân xanh màu lá dữ oai hùm”: Những gương mặt xanh xao, gầy ốm vì sốt rét, vì cuộc sống kham khổ ở rừng. Chọn C.
Lời giải
Tính từ “rải rác” được đảo lên đầu câu thơ. Từ “mồ” mang nét nghĩa ẩn dụ cho cái chết, cho sự mất mát, hi sinh trong chiến tranh. Chọn D.
Đoạn văn 2
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 56 đến 60:
(1) Tiếng nói là người bảo vệ quý báu nhất nền độc lập của các dân tộc, là yếu tố quan trọng nhất giúp giải phóng các dân tộc bị thống trị. Nếu người An Nam hãnh diện giữ gìn tiếng nói của mình và ra sức làm cho tiếng nói ấy phong phú hơn để có khả năng phổ biến tại An Nam các học thuyết đạo đức và khoa học của châu Âu, việc giải phóng dân tộc An Nam chỉ còn là vấn đề thời gian. Bất cứ người An Nam nào vứt bỏ tiếng nói của mình, thì cũng đương nhiên khước từ niềm hi vọng giải phóng giống nòi. [...] Vì thế, đối với người An Nam chúng ta, chối từ tiếng mẹ đẻ đồng nghĩa với từ chối sự tự do của mình... [...]
(2) Nhiều đồng bào chúng ta, để biện minh việc từ bỏ tiếng mẹ đẻ, đã than phiền rằng tiếng nước mình nghèo nàn. Lời trách cứ này không có cơ sở nào cả. Họ chỉ biết những từ thông dụng của ngôn ngữ và còn nghèo từ An Nam hơn bất cứ người phụ nữ và nông dân An Nam nào. Ngôn ngữ của Nguyễn Du nghèo hay giàu?
(3) Vì sao người An Nam có thể dịch những tác phẩm của Trung Quốc sang nước mình, mà lại không thể viết những tác phẩm tương tự?
(4) Phải quy lỗi cho sự nghèo nàn của ngôn ngữ hay sự bất tài của con người?
(Tiếng mẹ đẻ - nguồn giải phóng các dân tộc bị áp bức – Nguyễn An Ninh)
Lời giải
Phương thức biểu đạt chính: Nghị luận. Vì đoạn trích bàn luận về vai trò quan trọng của tiếng nói trong việc bảo vệ nền độc lập dân tộc. Chọn C.
Lời giải
Thao tác lập luận chính trong đoạn văn thứ (2) của đoạn trích là thao tác bác bỏ. Cụ thể là tác giả đã bác bỏ quan điểm cho rằng “tiếng nước mình nghèo nàn”. Chọn B.
Lời giải
Câu 137
Tác giả sử dụng biện pháp nghệ thuật gì trong câu văn: Tiếng nói là người bảo vệ quý báu nhất nền độc lập của các dân tộc, là yếu tố quan trọng nhất giúp giải phóng các dân tộc bị thống trị.
Lời giải
Các biện pháp tu từ:
+ So sánh: Tiếng nói là người bảo vệ quý báu nhất.
+ Liệt kê: là người…., là yếu tố….
→ Chọn B.
Lời giải
Phép nối được sử dụng qua các từ nối: “Nếu”, “Vì thế”. Phép lặp: cụm từ “tiếng nói”,… được lặp lại ở các câu văn (1), (2), (3) trong đoạn văn thứ (1). Chọn C.
Đoạn văn 3
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 61 đến 65:
Pháp luật là cái để ngăn cấm việc riêng tư sai lầm vượt ra ngoài pháp luật. Hình phạt nghiêm là để cho lệnh được thi hành và trừng trị cấp dưới. Cái uy không thể cho mượn. Cái quyền không thể dùng chung với người khác. Nếu uy quyền chung với người khác thì bọn gian tà nhan nhản. Pháp luật không chắc chắn thì nhà vua bị nguy, hình phạt không quyết đoán thì không thắng được kẻ gian.
Cho nên có câu: “Người thợ khéo tuy dùng ý và mắt cũng đúng dây mực, nhưng trước đó phải lấy cái quy cái củ để đo [...]”. Nhờ dây dọi thẳng mà cây cong bị đẽo. Nhờ cái mực nước bằng mà chỗ cao, chỗ nghiêng bị gọt. Nhờ treo cái cân lên mà bớt được cái nặng, thêm được vào cái nhẹ. Nhờ xác lập cái đấu, cái thạch mà bớt được cái nhiều, thêm được cái ít. Cho nên lấy pháp luật trị nước chỉ cốt theo pháp luật mà làm hay ngăn cấm mà thôi.
Pháp luật không hùa theo người sang. Sợi dây dọi không uốn mình theo cây gỗ cong. Khi đã thi hành pháp luật thì kẻ khôn cũng không thể từ, kẻ dũng cũng không dám tranh. Trừng trị cái sai không tránh kẻ đại thần, thưởng cái đúng không bỏ sót kẻ thất phu. Cho nên điều sửa chữa được sự sai lầm của người trên, trị được cái gian của kẻ dưới, trừ được loạn, sửa được điều sai, thống nhất đường lối của dân không gì bằng pháp luật.
(Hàn Phi Tử, tập I, bản dịch của Phan Ngọc,
NXB Văn học, Hà Nội, 1990)
Lời giải
Dựa vào câu: Nhờ xác lập cái đấu, cái thạch mà bớt được cái nhiều, thêm được cái ít. Chọn A.
Lời giải
Dựa vào câu: Hình phạt nghiêm là để cho lệnh được thi hành và trừng trị cấp dưới. Chọn B.
Câu 141
Theo đoạn văn, điều gì có thể sửa chữa được sự sai lầm của người trên, trị được cái gian của kẻ dưới, trừ được loạn, sửa được điều sai, thống nhất đường lối của dân?
Lời giải
Dựa vào câu cuối: Cho nên điều sửa chữa được sự sai lầm của người trên, trị được cái gian của kẻ dưới, trừ được loạn, sửa được điều sai, thống nhất đường lối của dân không gì bằng pháp luật. Chọn C.
Lời giải
Dựa vào câu: Người thợ khéo tuy dùng ý và mắt cũng đúng dây mực, nhưng trước đó phải lấy cái quy cái củ để đo [...]. “quy” là dụng cụ để vẽ vòng tròn, “củ” là dụng cụ để vẽ góc vuông. Chọn B.
Lời giải
“nhan nhản”: nhiều đến mức tràn ngập, chỗ nào cũng thấy, cũng gặp. Từ trái nghĩa là “hiếm có”. Chọn A.
Đoạn văn 4
Đọc đoạn trích sau đây và trả lời các câu hỏi từ 66 đến 70:
Những người dân “tứ xứ nhập đô” đã và đang mang đến cho đất Thăng Long xưa một diện mạo khá phức tạp. Bên cạnh lề thói, nền nếp cũ của dân Kinh kì - Kẻ chợ xưa với những nét thâm trầm, tinh tế, thanh lịch, chuộng hình thức. Hà Nội nay còn mang nét sôi nổi, mạnh mẽ, trẻ trung, nhưng vất vả, bề bộn của những người dân tứ xứ xa quê, dân lang thang, dân thực dụng... mới nhập cư Hà Nội, đang cố gắng hết sức và bằng mọi cách xác lập một chỗ đứng của mình ở Thủ đô. Hiện nay, khi Hà Nội vừa được mở rộng như phương án dự kiến thì cơ cấu dân số Hà Nội còn đa dạng và phức tạp hơn nữa. Chẳng hạn, dân số sản xuất nông nghiệp tăng cao, tỉ lệ người mù chữ và không đi học ở Hà Nội cũng tăng cao, cơ sở vật chất ở một số vùng xa xôi của Hà Nội còn thấp kém... mà người thủ đô cần giải quyết để Hà Nội thực sự trở thành thủ đô hiện đại và có văn hóa cao như chúng ta mong ước.
(Nguyễn Thị Bích Hà, Hà Nội con người lịch sử văn hóa,
NXB Đại học Sư phạm, 2013, trang 147 - 148)
Lời giải
Câu 145
Diện mạo của Hà Nội đã thay đổi theo chiều hướng như thế nào khi những người dân di cư về Thủ đô?
Lời giải
Dựa vào câu thứ 2 và 3 của đoạn văn. Chọn C.
Câu 146
Xuất phát từ biểu hiện nào mà tác giả có thể đi đến kết luận “cơ cấu dân số Hà Nội còn đa dạng và phức tạp hơn nữa” khi Hà Nội vừa được mở rộng?
Lời giải
Lời giải
“tứ xứ nhập đô”: Người dân ở nhiều vùng đất khác nhau di chuyển vào nội đô sinh sống và làm việc. Chọn D.
Lời giải
Từ “chỗ đứng” trong đoạn trích gần nghĩa hơn cả với từ “vị trí” vì căn cứ vào ngữ cảnh của câu văn chứa cụm từ “chỗ đứng” trong đoạn trích có thể suy luận rằng những người dân nhập cư vào Hà Nội cần nhanh chóng xác lập cho mình một vị trí, vai trò khi rời làng di cư ra thành phố tạo lập cuộc sống mới. Chọn A.
Đoạn văn 5
Dựa vào thông tin dưới đây để trả lời các câu từ 109 đến 110:
Trong thời gian thực hiện hai kế hoạch Nhà nước 5 năm (1976-1985), cách mạng xã hội chủ nghĩa ở nước ta đạt được những thành tựu đáng kể trên các lĩnh vực của đời sống xã hội, song cũng gặp không ít khó khăn. Đất nước lâm vào tình trạng khủng hoảng, trước hết là khủng hoảng kinh tế-xã hội. Một trong những nguyên nhân cơ bản của tình trạng đó là do ta mắc phải “sai lầm nghiêm trọng và kéo dài về chủ trương, chính sách lớn, sai lầm về chỉ đạo chiến lược và tổ chức thực hiện”.
Để khắc phục sai lầm, khuyết điểm, đưa đất nước vượt qua khủng hoảng và đẩy mạnh cách mạng xã hội chủ nghĩa tiến lên, Đảng và Nhà nước ta phải tiến hành đổi mới.
Những thay đổi của tình hình thế giới và quan hệ giữa các nước do tác động của cách mạng khoa học-kĩ thuật trở thành xu thế thế giới ; cuộc khủng hoảng toàn diện, trầm trọng ở Liên Xô và các nước xã hội chủ nghĩa khác cũng đòi hỏi Đảng và Nhà nước ta phải tiến hành đổi mới.
(Nguồn: SGK Lịch sử 12, trang 208).
Câu 149
Việt Nam bắt đầu thực hiện công cuộc đổi mới (tháng 12-1986) trong tình hình quốc tế đang có chuyển biến nào sau đây?
Lời giải
B loại vì Liên Xô và Mĩ tuyên bố chấm dứt Chiến tranh lạnh năm 1989.
C loại vì chỉ có Xingapo là “con rồng” kinh tế châu Á.
D loại vì xu hướng hòa hoãn Đông-Tây bắt đầu xuất hiện từ những năm 70 của thế kỉ XX.
Chọn A.
Câu 150
Điểm tương đồng trong công cuộc cải cách, mở cửa ở Trung Quốc với công cuộc cải tổ của Liên Xô và đổi mới đất nước ở Việt Nam là gì?
Lời giải
HS sử dụng phương án loại trừ:
A loại vì cải cách ở 3 nước được tiến hành khi đã giành được độc lập.
B loại vì Việt Nam và Trung Quốc không tiến hành đa nguyên, đa đảng.
Chọn C vì cả 3 nước đều tiến hành cải cách khi đất nước lâm vào tình trạng khủng hoảng kéo dài.
D loại vì đổi mới nhằm đưa đất nước thoát khỏi khủng hoảng, riêng ở Liên Xô thì thực hiện đa nguyên đa đảng nên vai trò của Đảng Cộng sản bị suy giảm, cũng là 1 trong những nguyên nhân làm cho công cuộc cải tổ thất bại, CNXH ở Liên Xô sụp đổ.
260 Đánh giá
50%
40%
0%
0%
0%