Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
31171 lượt thi 48 câu hỏi 60 phút
Câu 1:
A. \(\frac{8}{{89}}.\)
B. \(\frac{{81}}{{89}}.\)
C. \(\frac{{36}}{{89}}.\)
D. \(\frac{{53}}{{89}}.\)
Câu 2:
Gọi S là tập hợp các số tự nhiên có hai chữ số. Trong các số: 7; 15; 106; 99, số nào thuộc và số nào không thuộc tập S? Dùng kí hiệu để trả lời.
Câu 3:
Số nghiệm của phương trình \({\log _3}x = {\log _2}\left( {1 + \sqrt x } \right)\) là
A. 0.
B. 3.
C. 1.
D. 2.
Câu 4:
Giải phương trình: \(3{\log _3}\left( {1 + \sqrt x + \sqrt[3]{x}} \right) = 2{\log _2}\left( {\sqrt x } \right).\)
Câu 5:
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y(−1).
Câu 6:
Cho hàm số y = ax3 + bx2 + cx + d có đồ thị như hình vẽ. Tìm mệnh đề đúng.
A. a < 0, b > 0, c > 0, d < 0.
B. a < 0, b < 0, c > 0, d < 0.
C. a > 0, b > 0, c > 0, d < 0.
D. a < 0, b > 0, c < 0, d < 0.
Câu 7:
Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là
A. z = 0.
B. x + y + z = 0.
C. y = 0.
D. x = 0.
Câu 8:
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng:
\({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 4 - t}\\{z = - 1 + 2t}\end{array}} \right.;\,\,{d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}};\,\,{d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\)
Viết phương trình đường thẳng \(\Delta \), biết \(\Delta \) cắt ba đường thẳng d1, d2, d3 lần lượt tại các điểm A, B, C sao cho AB = BC.
Câu 9:
Tính tổng \(S = C_n^0 + 3C_n^1 + {3^2}C_n^2 + ... + {3^n}C_n^n.\)
Câu 10:
Từ 1 điểm A nằm ngoài đường tròn (O; R), kẻ 2 tiếp tuyến AB, AC với (O; R) (B và C là 2 tiếp điểm).
a) Chứng minh 4 điểm A, B, O, C cùng thuộc 1 đường tròn và AO ⊥ BC tại H.
b) Vẽ đường kính BD. Đường thẳng qua O và vuông góc với AD cắt tia BC tại E. Chứng minh: DC // OA.
Câu 11:
Cho hình phẳng giới hạn bởi các đường y = xlnx, y = 0, x = e quay xung quanh trục Ox tạo thành khối tròn xoay có thể tích bằng \(\frac{\pi }{a}\left( {b{e^3} - 2} \right).\) Tìm a và b.
Câu 12:
Cho nửa đường tròn (O), đường kính AB. Kẻ 2 tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm). CM cắt By tại D. Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB.
a) Tính \(\widehat {COD}.\)
b) Tứ giác OIMK là hình gì?
c) Chứng minh AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Câu 13:
Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC, P thuộc cạnh SA sao cho PA = 2PS. Gọi V1, V2 lần lượt là thể tích của các khối tứ diện BMNP và SABC. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Câu 14:
Cho hình chóp tam giác S.ABC. Gọi M là trung điểm của SB, N thuộc cạnh SC sao cho NS = 2NC. Kí hiệu V1, V2 lần lượt là thể tích của các khối chóp A.BMNC và S.AMN. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
Câu 15:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên hợp với đáy một góc \(60^\circ .\) Tính thể tích khối chóp S.ABC.
Câu 16:
Tìm số giá trị nguyên của m để phương trình: 2(x2 + 2x)2 – (4m – 1)(x2 + 2x) + 2m – 1 = 0 có đúng 3 nghiệm thuộc [−3; 0].
Câu 17:
Tìm số giá trị nguyên của tham số m ∈ [0; 30] để phương trình 6x + 2mx = m2x + 2x.3x có đúng 3 nghiệm nguyên dương.
Câu 18:
Tìm tập xác định của hàm số \(y = \frac{{2x - 1}}{{\sqrt x - 2}}.\)
Câu 19:
Tìm tập xác định của hàm số \(y = \sqrt {\frac{{{x^2} + x + 1}}{{\left| {2x - 1} \right| - x - 2}}} .\)
Câu 20:
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.
Câu 21:
Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 2}}.\) Tìm các giá trị nguyên của x để P < 0.
Câu 22:
Tìm tọa độ giao điểm của đồ thị hai hàm số y = -x2 và y = x – 2.
Câu 23:
Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và \(y = - \frac{3}{4}x + 3.\)
Câu 24:
Tính tổng các nghiệm của phương trình \(\log _2^2x - {\log _2}9.{\log _3}x = 3.\)
Câu 25:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên:
a) Một cách tuỳ ý?
b) Theo từng môn và sách Toán nằm ở giữa?
Câu 26:
Trên một kệ sách có 5 quyển sách Toán, 4 quyển sách Lí, 3 quyển sách Văn. Các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp các quyển sách trên theo từng môn?
Câu 27:
Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.
Câu 28:
Tính đạo hàm của hàm số sin2x.
Câu 29:
Cho a, b, c là ba số thực dương và khác 1. Đồ thị các hàm số y = ax, y = logbx, y = logcx được cho trong hình dưới đây:
Mệnh đề nào dưới đây đúng?
A. a < b < c.
B. c < b < a.
C. b < c < a.
D. b < a < c.
Câu 30:
Tìm các giá trị nguyên của m để phương trình \({\cos ^2}x + \sqrt {\cos x + m} = m\) có nghiệm.
Câu 31:
Tìm giá trị nhỏ nhất của hàm số \(y = 3x + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Câu 32:
Câu 33:
Một đĩa gốm cổ cần được phục hồi. Hãy xác định tâm và bán kính của đĩa. Lấy 2 điểm A, B thuộc đường tròn lớn và 2 điểm C, D thuộc đường tròn nhỏ. Xác định giao điểm 2 đường trung trực của AB và CD.
Câu 34:
Phân tích đa thức sau thành nhân tử: x2 – 6x + 2(x – 6).
Câu 35:
Cho hình hộp ABCD.A′B′C′D′, và một điểm M nằm giữa hai điểm A và B. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB’D’). Cắt hình hộp bởi mặt phẳng (P) thì thiết diện là hình gì?
Câu 36:
Cho ∆ABC có các tia phân giác của góc B và góc A cắt nhau tại điểm O. Qua O kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N. Cho BM = 2cm, CN = 3cm. Tính MN.
Câu 37:
Một người đem gửi tiền tiết kiệm vào một ngân hàng với lãi suất 1% một tháng. Biết rằng cứ sau mỗi quý (3 tháng) thì lãi sẽ được cộng dồn vào vốn gốc. Hỏi sau tối thiểu bao nhiêu năm thì người đó nhận lại được số tiền bao gồm cả vốn lẫn lãi gấp ba lần số tiền ban đầu?
Câu 38:
Cho tam giác đều ABC tâm O, M là điểm bất kỳ trong tam giác. Hình chiếu của M xuống ba cạnh của tam giác lần lượt là D, E, F. Hệ thức giữa các vectơ \(\overrightarrow {MD} ,\overrightarrow {ME} ,\)\[\overrightarrow {MF} ,\] \(\overrightarrow {MO} \) là gì?
Câu 39:
Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log3(3x + 3) + x = 2y + 9y?
Câu 40:
Cho phương trình \(\left( {2\log _3^2x - {{\log }_3}x - 1} \right)\sqrt {{5^x} - m} = 0\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng hai nghiệm phân biệt?
Câu 41:
Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)
Câu 42:
Trong không gian Oxyz, cho mặt phẳng (P): x + 2y + 2z + 4 = 0 và mặt cầu (S): x2 + y2 + z2 − 2x − 2y − 2z – 1 = 0. Tìm tọa độ của điểm M trên (S) sao cho d(M, (P)) đạt GTNN.
Câu 43:
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z + 6 = 0 và các điểm A(-1; 2; 3), B(3; 0; -1), C(1; 4; 7). Tìm điều kiện của điểm M thuộc (P) sao cho MA2 + MB2 + MC2 nhỏ nhất.
Câu 44:
Một hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ngẫu nhiên từ hộp ra 4 quả cầu. Tính xác suất để trong 4 quả cầu được lấy có đúng 2 quả cầu đỏ.
Câu 45:
Tìm tất cả các giá trị của tham số m để hàm số y = x3 − mx2 + (2m − 3)x − 3 đạt cực đại tại điểm x = 1.
Câu 46:
Tìm tất cả các giá trị của tham số m để phương trình 4x – 3.2x + 1 + m = 0 có hai nghiệm thực x1; x2 thỏa mãn x1 + x2 < 2.
Câu 47:
Cho hàm số \(y = \frac{{2x + 1}}{{2x - 1}}\) có đồ thị (C) và đường thẳng d: y = x + 2. Tìm tọa độ giao điểm của đồ thị (C) và đường thẳng d.
Câu 48:
6234 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com