7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 73)
25 người thi tuần này 4.6 75.8 K lượt thi 47 câu hỏi 60 phút
- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
- Đề số 76
- Đề số 77
- Đề số 78
- Đề số 79
- Đề số 80
- Đề số 81
- Đề số 82
- Đề số 83
- Đề số 84
- Đề số 85
- Đề số 86
- Đề số 87
- Đề số 88
- Đề số 89
- Đề số 90
- Đề số 91
- Đề số 92
- Đề số 93
- Đề số 94
- Đề số 95
- Đề số 96
- Đề số 97
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Vì H là trực tâm của tam giác ABC nên \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH} .\overrightarrow {BC} = 0}\\{\overrightarrow {BH} .\overrightarrow {AC} = 0}\\{[\overrightarrow {AB} ,\overrightarrow {AC} ].\overrightarrow {AH} = 0}\end{array}} \right.\)
Ta giả sử \(H(x,y,z)\), ta có:
\(\begin{array}{l}\overrightarrow {BC} = (0; - 3; - 4)\\\overrightarrow {AC} = ( - 2;0; - 4)\\\overrightarrow {AH} = (x - 2;y;z)\\\overrightarrow {BH} = (x;y - 3;z)\\\overrightarrow {AB} = ( - 2;3;0)\end{array}\)
Vì \(\overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow 3y + 4z = 0\) (1)
Vì \(\overrightarrow {BH} \cdot \overrightarrow {AC} = 0 \Leftrightarrow x + 2z = 0\) (2)
Ta có: \([\overrightarrow {AB} ,\overrightarrow {AC} ] = ( - 12; - 8;6)\)
Suy ra \[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cdot \overrightarrow {AH} = 0\]
\(\begin{array}{l} \Leftrightarrow - 12(x - 2) - 8y + 6z = 0\\ \Leftrightarrow - 6x - 4y + 3z + 12 = 0\end{array}\) (3)
Từ (1), (2) và (3) ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{3y + 4z = 0}\\{x + 2z = 0}\\{ - 6x - 4y + 3z + 12 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{72}}{{61}}}\\{y = \frac{{48}}{{61}}}\\{z = \frac{{ - 36}}{{61}}}\end{array}} \right.\)
Suy ra \(H\left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\)
Do đó \(\overrightarrow {OH} = \left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\) là vecto chỉ phương của OH
Chọn \(\vec u = (6,4, - 3)\) là VTCP của OH và OH qua O(0; 0; 0) nên phương trình tham số là \(\left\{ \begin{array}{l}x = 6t\\y = 4t\\z = - 3t\end{array} \right.\)
Vậy đáp án cần chọn là C.
Lời giải
Ta thấy tổng 5 chữ số nhỏ nhất là 1 + 2 + 3 + 4 + 5 = 15
Tổng 5 chữ số lớn nhất là 3 + 4 + 5 + 6 + 7 =25
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng 28 – 18 = 10
Do đó có các trường hợp: loại cặp 3; 7 còn 5 số 1; 2 ; 4; 5; 6 hoặc loại cặp 4; 6 còn 5 số 1; 2; 3; 5; 7
Số số thỏa mãn là: 3 . 4! + 1 . 4! = 96 số
Vậy ta lập được 96 số.
Lời giải
Đáp án đúng là: C
Bất phương trình \({\rm{x}} + 5 > 0 \Leftrightarrow {\rm{x}} > - 5\)
Bất phương trình \({({\rm{x}} - 1)^2}({\rm{x}} + 5) > 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x > - 5\end{array} \right.\) nên phương án A sai
Bất phương trình \({x^2}(x + 5) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\{x > - 5}\end{array}} \right.\) nên phương án B sai
Bất phương trình \(\sqrt {{\rm{x}} + 5} ({\rm{x}} + 5) > 0 \Leftrightarrow {\rm{x}} > - 5\) nên phương án \({\rm{C}}\)đúng
Bất phương trình \(\sqrt {x + 5} \left( {x - 5} \right) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + 5 > 0}\\{x - 5 > 0}\end{array} \Leftrightarrow x > 5} \right.\) nên phương án D sai
Vậy đáp án cần chọn là C.
Lời giải
Đáp án đúng là: B
Phương trình \(2f(\sin x) + 3 = 0 \Leftrightarrow f(\sin x) = - \frac{3}{2}\quad (*)\) có nghiệm trên [–π; 2π]
⇔ Đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại các điểm trên [–π; 2π]
Đặt \(\sin x = t \Rightarrow x \in [ - \pi ;2\pi ] \Rightarrow t \in [ - 1;1]\)
Ta có bảng biến thiên:
![Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid13-1695110823.png)
Dựa vào bảng biến thiên ta có: đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt
Ta có \((*) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = {t_1} \in (0;1)}\\{\sin x = {t_2} \in ( - 1;0)}\end{array}} \right.\)
![Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid14-1695110834.png)
Dựa vào đồ thị hàm số ta thấy:
+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại hai điểm phân biệt trong [–π; 2π]
+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại bốn điểm phân biệt trong [–π; 2π]
Như vậy đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại 6 điểm phân biệt trên [–π; 2π]
Suy ra phương trình đã cho có 6 nghiệm phân biệt
Vậy đáp án cần chọn là B.
Lời giải
Đáp án đúng là: D
Vì \(\tan \alpha = \frac{2}{3}\) nên cosα ≠ 0
Chia cả từ và mẫu của \({\rm{M}}\) cho cos3α ta được:
\(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }} = \frac{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + 3\frac{{{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }}}}{{27\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} - 25\frac{{{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }}}} = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}}\)
Thay \(\tan \alpha = \frac{2}{3}\) ta được \(M = \frac{{{{\left( {\frac{2}{3}} \right)}^3} + 3}}{{27 \cdot {{\left( {\frac{2}{3}} \right)}^3} - 25}} = \frac{{ - 89}}{{459}}\)
Vậy đáp án cần chọn là D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.