7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 42)
92 người thi tuần này 4.6 60.9 K lượt thi 69 câu hỏi 60 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
.
Ta thấy .
Vậy phương trinh có hai nghiệm thuộc [p; 5p].
Lời giải

Lời giải
Điều kiện: x ³ −1
PT
Vậy x = 3.
Câu 4
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE=CF. Chứng minh tam giác EDF vuông cân.
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE=CF. Chứng minh tam giác EDF vuông cân.
Lời giải

Xét ΔAED và ΔDCF ta có:
AD = CD (vì ABCD là hình vuông)
AE=CF ( gt)
Do đó ΔAED = ΔCFD (c.g.c)
Suy ra DE=DF (1) (hai cạnh tương ứng) và (hai góc tương ứng).
Suy ra
Hay (2)
Từ (1) và (2) suy ra ΔDEF vuông cân tại D.
Vậy ΔDEF vuông cân tại D.
Câu 5
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. Gọi I là trung điểm của EF. Chứng minh BI = DI.
Cho hình vuông ABCD.Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF. Gọi I là trung điểm của EF. Chứng minh BI = DI.
Lời giải

Xét ΔAED và ΔDCF ta có:
AD = CD (vì ABCD la hình vuông)
AE = CF ( gt)
Do đó ΔAED = ΔCFD (cạnh – góc – cạnh)
Suy ra DE=DF (1) (hai cạnh tương ứng) và (hai góc tương ứng).
Suy ra
Hay (2)
Từ (1) và (2) suy ra ΔDEF vuông cân tại D.
Mà I là trung điểm của EF nên DI là đường trung tuyến ứng với EF.
Suy ra (định lý đường trung tuyến trong tam giác vuông) (3)
Xét ΔBEF vuông tại B có BI là đường trung tuyến ứng với EF.
Suy ra (định lý đường trung tuyến trong tam giác vuông) (4)
Từ (3) và (4) ta có DI = BI.
Vậy DI = BI.
Lời giải
(x + 2)2 – 9 = 0
(x + 2)2 = 9
x + 2 = 3 hoặc x + 2 = −3
x = 1 hoặc x = –5.
Vậy x ∈ {1; –5}.
Lời giải
x + 2)2 – x2 + 4 = 0
Û 4x + 8 = 0
Û 4x = –8
Û x = –2
Vậy x = –2.
Câu 8
Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng . Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng . Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
Lời giải

Câu 9
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao điểm K của đường thẳng AM với (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD). Gọi M là trung điểm của cạnh SC. Xác định giao điểm K của đường thẳng AM với (SBD).
Lời giải

Ta có: AM ⊂ (SAC)
Dễ thấy S ∈ (SAC) ∩ (SBD)
Gọi O là giao điểm của AC và BD
Khi đó O ∈ AC⊂ (SAC),
O ∈ BD ⊂ (SBD)
Do đó O ∈ (SAC) ∩ (SBD)
Þ SO = (SAC) ∩ (SBD)
Trong (SAC) gọi AM ∩ SO = {K}
Ta có: K ∈ AM, K ∈ SO ⊂ (SBD)
Þ AM ∩ (SBD) = {K}.
Vậy giao điểm K của đường thẳng AM với (SBD) là giao điểm của AM và SO.
Câu 10
Cho (S) là một mặt cầu cố định có bán kính R. Một hình trụ (H) thay đổi nhưng luôn có hai đường tròn đáy nằm trên (S). Gọi V1 là thể tích của khối cầu (S) và V2 là thể tích lớn nhất của khối trụ (H). Tính tỉ số .
Cho (S) là một mặt cầu cố định có bán kính R. Một hình trụ (H) thay đổi nhưng luôn có hai đường tròn đáy nằm trên (S). Gọi V1 là thể tích của khối cầu (S) và V2 là thể tích lớn nhất của khối trụ (H). Tính tỉ số .
Lời giải

Câu 11
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB, AC lấy tương ứng hai điểm D, E sao cho AD = AE. Từ A và D kẻ đường vuông góc với BE và cắt BC tại M, N. Tia ND cắt tia CA ở I. Chứng minh A là trung điểm của CI.
Cho tam giác ABC vuông cân tại A. Trên các cạnh AB, AC lấy tương ứng hai điểm D, E sao cho AD = AE. Từ A và D kẻ đường vuông góc với BE và cắt BC tại M, N. Tia ND cắt tia CA ở I. Chứng minh A là trung điểm của CI.
Lời giải

Gọi K là giao điểm của DN và BE
• Xét ΔBDK vuông tại K có:
• Xét ΔABE vuông tại A có:
Suy ra
Mà (vì hai góc đối đỉnh)
Suy ra
• Xét ΔDAI và ΔEAB có:
AD = AE
Do đó ΔDAI = ΔEAB (cạnh góc vuông – góc nhọn)
Suy ra AI = AB (hai cạnh tương ứng).
Mà AB = AC nên AI = AC.
Vậy A là trung điểm của CI.
Câu 12
Cho tam giác ABC vuông tại A, AB = AC. Trên các cạnh AB, AC lấy tương ứng hai điểm D, E sao cho AD = AE. Từ A và D kẻ đường vuông góc với BE và cắt BC tại M, N. Tia ND cắt tia CA ở I. Chứng minh MC = MN.
Cho tam giác ABC vuông tại A, AB = AC. Trên các cạnh AB, AC lấy tương ứng hai điểm D, E sao cho AD = AE. Từ A và D kẻ đường vuông góc với BE và cắt BC tại M, N. Tia ND cắt tia CA ở I. Chứng minh MC = MN.
Lời giải

Ta có: AM // IN (vì cùng vuông góc với BE)
Gọi K là giao điểm của DN và BE
• Xét ΔBDK vuông tại K có:
• Xét ΔABE vuông tại A có:
Suy ra
Mà (vì hai góc đối đỉnh)
Suy ra
• Xét ΔDAI và ΔEAB có:
AD = AE
Do đó ΔDAI = ΔEAB (cạnh góc vuông – góc nhọn)
Suy ra AI = AB (hai cạnh tương ứng).
Mà AB = AC nên AI = AC.
Xét ΔINC có: AI = AC; AM // IN.
Suy ra MN = MC (hệ quả của tính chất đường trung bình trong tam giác).
Vậy MN = MC.
Câu 13
Một cửa hàng sách hạ giá 10% giá sách nhân ngày Quốc tế thiếu nhi ngày 1/6. Tuy vậy, cửa hàng vẫn còn lãi 8%. Hỏi ngày thường thì cửa hàng được lãi bao nhiêu phần trăm?
Một cửa hàng sách hạ giá 10% giá sách nhân ngày Quốc tế thiếu nhi ngày 1/6. Tuy vậy, cửa hàng vẫn còn lãi 8%. Hỏi ngày thường thì cửa hàng được lãi bao nhiêu phần trăm?
Lời giải
Do hạ giá 10% nên giá bán mới bằng 90% giá ngày thường
Coi giá vốn là 100% thì giá bán mới bằng 108% giá vốn
Như vậy (giá vốn) bằng (giá ngày thường)
Giá ngày thường so với giá vốn là:
.
Ngày thường thì cửa hàng được lãi là:
120% – 100% = 20%.
Đáp số: 20%.
Câu 14
Sau khi giảm giá 20% thì giá của một quyển sách là 9 600 đồng. Hỏi lúc đầu gái của quyển sách là bao nhiêu tiền?
Sau khi giảm giá 20% thì giá của một quyển sách là 9 600 đồng. Hỏi lúc đầu gái của quyển sách là bao nhiêu tiền?
Lời giải
Coi giá ban đầu là 100% thì giá sách sau khi giảm đi 20% là:
100% – 20% = 80%.
Vậy lúc đầu giá của cuốn sách đó là:
9600 : 80 × 100 = 12 000 (đồng).
Đáp số: 12 000 đồng.
Câu 15
Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.
Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.
Lời giải
• Số tự nhiên có 2 chữ số là: (số)
• Ω: “Chọn ngẫu nhiên 2 số từ tập hợp S” nên
• A: “Chọn được 2 số có chữ số hàng đơn vị giống nhau”.
Trường hợp 1: Chữ số hàng đơn vị là 0 Þ Có 9 chữ số là: 10; 20; 30; 40; 50; 60; 70; 80; 90
Þ Số cách chọn 2 số là:
Tương tự với các số có chữ số hàng đơn vị là: 1; 2; 3; 4; 5; 6; 7; 8; 9
Þ Có tất cả 10 trường hợp giống nhau.
.
Vậy xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau là .
Câu 16
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Lời giải
Theo giả thiết đề bài cho, ta có biểu đồ Ven:

Dựa vào biểu đồ Ven, ta thấy:
Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là:
6 – 3 = 3 (em)
Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là:
4 – 3 = 1 (em)
Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là:
5 – 3 = 2 (em)
Số học sinh chỉ giỏi một môn Toán là:
10 – 3 – 3 – 1 = 3 (em)
Số học sinh chỉ giỏi một môn Lý là:
10 – 3 – 3 – 2 = 2 (em)
Số học sinh chỉ giỏi một môn Hóa là:
11 – 1 – 3 – 2 = 5 (em)
Số học sinh giỏi ít nhất một trong ba môn là:
3 + 2 + 5 + 1 + 2 + 3 + 3 =19 (em)
Đáp số: 19 em.
Câu 17
Có 40 học sinh giỏi, mỗi em giỏi ít nhất 1 môn. Có 22 em giỏi Văn, 25 em giỏi Toán, 20 em giỏi Anh. Có 8 em giỏi đúng hai môn Văn, Toán. Có 7 em giỏi đúng hai môn Toán, Anh. Có 6 em giỏi đúng hai môn Anh, Văn. Hỏi có bao nhiêu em giỏi cả ba môn Văn, Toán, Anh?
Có 40 học sinh giỏi, mỗi em giỏi ít nhất 1 môn. Có 22 em giỏi Văn, 25 em giỏi Toán, 20 em giỏi Anh. Có 8 em giỏi đúng hai môn Văn, Toán. Có 7 em giỏi đúng hai môn Toán, Anh. Có 6 em giỏi đúng hai môn Anh, Văn. Hỏi có bao nhiêu em giỏi cả ba môn Văn, Toán, Anh?
Lời giải
Ta có sơ đồ Ven, ta có:

Số học sinh giỏi ít nhất hai môn là:
7 + 6 + 8 = 21 (em)
Số học sinh giỏi cả ba môn Toán, Văn, Anh là:
22 + 25 + 20 – 40 – 21 = 6 (em)
Đáp số: 6 em.
Lời giải
Tập xác định của hàm số là tập hợp các giá trị của x thỏa mãn điều kiện:
Để hàm số xác định trên khoảng (−∞;−2) cần có:
Þ m Î [−2; 3]
Vậy m Î [−2; 3].
Lời giải
Tập xác định của hàm số là tập hợp các giá trị của x thỏa mãn điều kiện:
x – m + 1 ¹ 0 Û x ¹ m – 1
Để hàm số xác định trên (0; 2) thì m – 1 Ï (0; 2).
Vậy các giá trị m thỏa mãn là m ≤ 1 hoặc m ≥ 3.
Câu 20
Trong mặt phẳng với hệ tọa độ Oxy, phép quay tâm I góc quay I(4; –3) biến đường thẳng d: x + y – 5 = 0 thành đường thẳng d' có phương trình là bao nhiêu?
Trong mặt phẳng với hệ tọa độ Oxy, phép quay tâm I góc quay I(4; –3) biến đường thẳng d: x + y – 5 = 0 thành đường thẳng d' có phương trình là bao nhiêu?
Lời giải
Lấy A(5; 0) thuộc d và B(0; 5) thuộc d
Phép quay Q(I; −180°) là phép đối xứng tâm I
• Q(I; −180°) (A) ® A’ nên A’(3; 6).
• Q(I; −180°) (B) ® B’ nên B’(8; –11).
Khi đó
Û –5x – 5y – 15 = 0 Û x + y + 3 = 0.
Vậy phương trình đường thẳng d’ là: x + y + 3 = 0.
Lời giải
Ta có: sin2 α + cos2 α = 1
⇔ cos2 α = 1 − sin2 α
Mà α là góc tù nên cos α < 0
Vậy
Lời giải
Ta có:
Vậy các giá trị x thoả mãn là hoặc .
Lời giải
Ta có .
Mặt khác .
Do đó .
Vậy nguyên hàm F(x) của hàm số f(x) = 2x = 2 là .
Câu 24
Việt và Nam chơi cờ. Trong một ván cờ, xác suất Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau 2 ván cờ.
Việt và Nam chơi cờ. Trong một ván cờ, xác suất Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau 2 ván cờ.
Lời giải
Xác suất 2 bạn hòa nhau là: 1 – 0,3 – 0,4 = 0,3.
Để hai bạn dừng chơi sau 2 ván cờ thì ván 1 hòa, ván 2 không hòa.
Vậy xác suất để hai bạn dừng chơi sau 2 ván cờ là: 0,3 . 0,7 = 0,21.
Câu 25
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM).
Lời giải

Chọn hệ trục tọa độ như hình vẽ, trong đó:
A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0); S(0; 0; 2a)
Vì M là trung điểm của SD nên M(0; a2; a)
Gọi O là giao điểm của AC, BD
Khi đó MO // SB nên SB // (ACM)
Do đó d(SB, (ACM)) = d(B, (ACM))
Ta có:
Suy ra là một vectơ chỉ phương của mặt phẳng (ACM).
Khi đó phương trình mặt phẳng (ACM): 2x – 2y + z = 0.
Do đó d(SB, (ACM)) = d(B, (ACM)) = .
Vậy khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM) là .
Câu 26
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD.
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD.
Lời giải

Gọi O là tâm hình vuông ABCD
Ta có: AC ^ BD; BD ^ SA
Do đó BD ^ (SAC)
Dựng OK ^ SC
Do đó OK là đoạn vuông góc chung của BD và SC
Khi đó (1)
Ta có: AC2 = AB2 + BC2 = 2a2
Suy ra
Thay vào (1) ta có .
Vậy .
Lời giải

Câu 28
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên khoảng (2; +∞). Tìm số phần tử của S.
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số đồng biến trên khoảng (2; +∞). Tìm số phần tử của S.
Lời giải
Ta có:
Hàm số đồng biến trên: (2; +¥) Û y’ > 0, " x Î (2; +¥)
Þ m Î {0; 1; 2}.
Vậy S có 3 phần tử.
Câu 29
Có bao nhiêu số tự nhiên có 5 chữ số trong đó các chữ số cách đều chữ số đứng giữa thì giống nhau?
Có bao nhiêu số tự nhiên có 5 chữ số trong đó các chữ số cách đều chữ số đứng giữa thì giống nhau?
Lời giải
Gọi số cần tìm là
• Có 9 cách chọn a (vì a khác 0)
• Có 10 cách chọn b.
• Có 10 cách chọn c.
Vậy có 9.10.10 = 900 (số).
Câu 30
Có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5 và 7 quả màu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra 3 quả cầu vừa khác màu vừa khác số?
Có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5 và 7 quả màu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra 3 quả cầu vừa khác màu vừa khác số?
Lời giải
Để lấy ra ba quả cầu vừa khác màu vừa khác số ta phải thực hiện qua ba giai đoạn:
• Chọn một quả cầu đỏ.
• Chọn một quả cầu xanh.
• Chọn một quả cầu vàng.
• Chọn quả cầu đỏ có 5 cách chọn.
• Chọn quả cầu xanh có 5 cách chọn (trừ quả cầu được đánh số trùng với quả cầu đỏ).
• Chọn quả cầu vàng có 5 cách chọn (trừ hai quả cầu được đánh số trùng với quả cầu đỏ và quả cầu xanh).
Theo quy tắc nhân ta được 5. 5. 5 = 125 cách lấy ra ba quả cầu vừa khác màu vừa khác số.
Vậy có 125 cách lấy ra ba quả cầu vừa khác màu vừa khác số.
Câu 31
Một hộp đựng 15 viên bi khác nhau gồm 4 bi đỏ, 5 bi trắng và 6 bi vàng. Tính số cách chọn 4 viên bi từ hộp đó sao cho không có đủ 3 màu
Lời giải
• Trường hợp 1: chọn 4 bi đỏ hoặc trắng có: (cách)
• Trường hợp 2: chọn 4 bi đỏ và vàng hoặc 4 bi vàng có (cách)
• Trường hợp 3: chọn 4 bi trắng và vàng có (cách)
Số cách chọn 4 viên bi từ hộp đó sao cho không có đủ 3 màu là:
126 + 209 + 310 = 645 (cách).
Vậy có 645 cách.
Lời giải
Ta có
Vậy phương trình đã cho có nghiệm .
Lời giải

Lời giải
Thể tích khối bát diện đều là:
Vậy thể tích của khối bát diện đều cạnh a là .
Lời giải
Tập xác định: D =[−2; 2] \ {−1}.
Ta thấy
• ;
• .
Suy ra đồ thị có đúng một đường tiệm cận đứng là x = −1
Do tập xác định D = [−2; 2] \ {−1} nên ta không xét được và .
Suy ra hàm số không có đường tiệm cận ngang.
Vậy hàm số có 1 đường tiệm cận đứng x = −1.
Lời giải
x2 – 8x + 16 = 0
Û (x – 4)2 = 0
Û x – 4 = 0
Û x = 4
Vậy x = 4.
Lời giải
25x2 – 9 = 0
(5x – 3)(5x + 3) = 0
5x – 3 = 0 hoặc 5x + 3 = 0
hoặc
Vậy .
Lời giải
Ta có: y = ax4 + bx2 + c (a ¹ 0)
Suy ra y’ = 4ax3 + 2bx
Dựa vào bảng biến thiên, ta thầy đồ thị hàm số đi qua các điểm (-1; 2), (0; 1), (1; 2) và các các điểm này là các điểm cực trị của hàm số
Khi đó P = a – 2ab + 3c = –1 – 2 . 2 + 3 . 1 = –2.
Vậy P = –2.
Câu 39
Cho các hàm số: y = 2x − 2 và y = (m + 1)x − m2 – m (m ≠ −1). Tìm m để đồ thị hai hàm số trên là các đường thẳng song song.
Cho các hàm số: y = 2x − 2 và y = (m + 1)x − m2 – m (m ≠ −1). Tìm m để đồ thị hai hàm số trên là các đường thẳng song song.
Lời giải
Để hai đồ thị hàm số trên song song thì:
(vô lý)
Vậy không tồn tại m để 2 đường thẳng trên song song.
Lời giải
Để d // d’ thì:
Vậy m = 4 thì d // d’.
Lời giải

Lời giải
cos3x – 2sin2x – cosx – sinx – 1 = 0
Û 4cos3x – 3cosx – 4sinx.cosx – sinx – cosx – 1 = 0
Û 4(1 – sin2 x)cosx – 4cosx(sinx + 1) – (sinx + 1) = 0
Û (1 + sinx)[4(1 – sinx)cosx – 4cosx – 1] = 0
Û (1 + sinx)( – 4sinx.cosx – 1) = 0
Vậy ; hoặc .
Câu 43
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
f(x) = 2x3 + 3x2 − 1trên đoạn. Tính P = M − m
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Lời giải
f(x) =2x3 + 3x2 – 1⇒ f ′(x) = 6x2 + 6x; f ′(x) = 0
Hàm số f(x) liên tục trên , có f(−2) = −5; f(−1) = 0;
Và
Þ P = M – m = 5
Vậy P = 5.
Lời giải
Hàm số xác định khi và chỉ khi:
1 – sin2 x ¹ 0
Û cos2 x ¹ 0
Û cos x ¹ 0
Vậy tập xác định của hàm số là .
Câu 45
Một hình thang cân có đường chéo vuông góc với cạnh bên. Biết rằng đáy nhỏ dài 14 cm, đáy lớn dài 50 cm. Tính diện tích hình thang.
Một hình thang cân có đường chéo vuông góc với cạnh bên. Biết rằng đáy nhỏ dài 14 cm, đáy lớn dài 50 cm. Tính diện tích hình thang.
Lời giải

Câu 46
Cho hàm số y = –x3 + 3x + 2. Tìm hai điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua điểm M(–1; 3).
Cho hàm số y = –x3 + 3x + 2. Tìm hai điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua điểm M(–1; 3).
Lời giải
Gọi A(x0; y0) và B là điểm đối xứng với A qua điểm M(–1; 3)
Suy ra M là trung điểm của AB nên B(–2 – x0; 6 – y0).
Do A và B thuộc đồ thị hàm số (C) nên:
Từ (1) và (2) lấy vế cộng vế ta được:
6 = –x03 + 3x0 + 2 – (–2 – x0)3 + 3(–2 – x0) + 2
⇔ 6 = –x03 + 3x0 + 2 + 8 + 12x0 + 6x02 + x03 – 6 – 3x0 + 2
⇔ 6x02 + 12x0 + 6 = 0
⇔ x0 = –1 nên y0 = 0.
Vậy 2 điểm cần tìm là: (–1; 0) và (–1; 6).
Câu 47
Cho hàm số y = f(x) liên tục trên đoạn [-2;4] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [–2; 4]. Tính giá trị của M2 + m2.
Cho hàm số y = f(x) liên tục trên đoạn [-2;4] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [–2; 4]. Tính giá trị của M2 + m2.
![Cho hàm số y = f(x) liên tục trên đoạn [-2;4] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn [–2; 4]. Tính giá trị của M2 + m2. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/08/blobid36-1690992556.png)
Lời giải
Ta có: ;
.
Do đó M2 + m2 = 72 + (– 4)2 = 65.
Vậy M2 + m2 = 65.
Lời giải
sin(2x + 1) = cos(3x + 2)
Vậy nghiệm của phương trình đã cho là ; .
Lời giải

Câu 50
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
Lời giải
y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1
⇒ y′ = 3x2 − 6(m + 2)x + 3(m2 + 4m)
Hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0;1)
⇔ f ′(x) ≤ 0, ∀x ∈ (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).
⇔ 3x2 − 6(m + 2)x + 3(m2 + 4m) ≤ 0, ∀x ∈ (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).
Xét phương trình 3x2 − 6(m + 2)x + 3(m2 + 4m) = 0 (∗)
Δ′ = 9(m +2)2 − 3.3.(m2 + 4m) = 36 > 0, ∀m
Þ Phương trình (*) có 2 nghiệm phân biệt x1, x2.
Để hàm số nghịch biến trên khoảng (0;1) thì x1 ≤ 0 < 1 ≤ x2
Mà nên .
Vậy có 4 giá trị nguyên m thỏa mãn.
Câu 51
Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a; CD = a. Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60º. Gọi I là trung điểm của AD. Biết 2 mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD.
Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a; CD = a. Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60º. Gọi I là trung điểm của AD. Biết 2 mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD.
Lời giải

Câu 52
Cho hàm số y = x3 − 3mx2 + 2 có đồ thị (Cm) và đường thẳng Δ: y = −x + 2. Biết (Cm) có hai cực trị và khoảng cách từ điểm cực tiểu của (Cm) đến đường thẳng Δ bằng . Tìm m.
Cho hàm số y = x3 − 3mx2 + 2 có đồ thị (Cm) và đường thẳng Δ: y = −x + 2. Biết (Cm) có hai cực trị và khoảng cách từ điểm cực tiểu của (Cm) đến đường thẳng Δ bằng . Tìm m.
Lời giải
Xét y’ = 0, ta có:
y’ = 3x2 – 6mx = 3x(x – 2m) = 0
Điều kiện để có hai cực trị là 2m ¹ 0 hay m ¹ 0.
Tọa độ 2 điểm cực trị là: A(0; 2) và B(2m; 2 – 4m3)
Nếu m < 0: A là điểm cực tiểu.
Khi đó d(A; ∆) = 0 ¹ (loại)
Nếu m > 0 thì B là cực tiểu
Khi đó
Do m > 0 nên m = 1.
Vậy m = 1.
Câu 53
Cho hàm số y = x3 + 3x2 + mx + m – 2 (m là tham số) có đồ thị là (Cm).
Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Cho hàm số y = x3 + 3x2 + mx + m – 2 (m là tham số) có đồ thị là (Cm).
Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Lời giải
PT hoành độ giao điểm của (C) và trục hoành:
y = x3 + 3x2 + mx + m – 2 = 0 (1)
(Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Þ Phương trình (1) có 3 nghiệm phân biệt
Þ (2) có 2 nghiêm phân biệt khác –1
Vậy m < 3.
Câu 54
Cho tứ giác ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi G; G’ theo thứ tự là trọng tâm của tam giác OAB và OCD. Biểu diễn vecto .
Cho tứ giác ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi G; G’ theo thứ tự là trọng tâm của tam giác OAB và OCD. Biểu diễn vecto .
Lời giải

Vì G’ là trọng tâm của tam giác OCD nên (1)
Vì G là trọng tâm của tam giác OAB nên
Khi đó .
Từ (1) và (2) suy ra
Vậy .
Câu 55
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.
Lời giải

Câu 56
Trong mặt phẳng tọa độ Oxy cho hai đồ thị hàm số y = x – 5m và y’ = 3x – m2. Tìm m để 2 đường thẳng cắt nhau tại 1 điểm có hoành độ bằng –3.
Trong mặt phẳng tọa độ Oxy cho hai đồ thị hàm số y = x – 5m và y’ = 3x – m2. Tìm m để 2 đường thẳng cắt nhau tại 1 điểm có hoành độ bằng –3.
Lời giải
Ta có: y = x – 5m (1)
y’ = 3x – m2 (2)
Để (1) và (2) cắt nhau tại một điểm thì y = y’
Û x – 5m = 3x – m2
Û m2 – 5m = 2x
Mà hai đồ thị cắt nhau tại điểm có hoành độ bằng –3 nên:
m2 – 5m = 2. (–3)
Û m2 – 5m + 6 = 0
Û m2 – 2m – 3m + 6 = 0
Û m(m – 2) – 3(m – 2) = 0
Û (m – 2)(m – 3) = 0
Vậy giá trị m thỏa mãn là m = 2 hoặc m = 3.
Câu 57
Trong mặt phẳng tọa độ Oxy cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số song song với đường thẳng (m): y = 0,5x – 3.
Trong mặt phẳng tọa độ Oxy cho hàm số bậc nhất y = (2k – 1)x + 3 – k (k là hệ số) có đồ thị là đường thẳng (d). Tìm giá trị của k để đồ thị hàm số song song với đường thẳng (m): y = 0,5x – 3.
Lời giải
Để đường thẳng (d) // (m) thì:
Vậy giá trị k thỏa mãn là .
Câu 58
Cho hình thang ABCD có hai cạnh đáy là AB và CD mà AB = 3CD. Tìm tỉ số của phép vị tự biến điểm A thành điểm C và biến điểm B thành điểm D.
Cho hình thang ABCD có hai cạnh đáy là AB và CD mà AB = 3CD. Tìm tỉ số của phép vị tự biến điểm A thành điểm C và biến điểm B thành điểm D.
Lời giải

Gọi I là giao điểm của AC và BD.
Do ABCD là hình thang có AB = 3CD nên .
Mà I nằm giữa A, C và nằm giữa B, D nên
Phép vị tự biến điểm A thành điểm C và biến điểm B thành điểm D là phép vị tự tâm I có tỉ số là:
Vậy tỉ số của phép vị tự biến điểm A thành điểm C và biến điểm B thành điểm D là .
Lời giải

Lời giải

Câu 61
Cho hàm số y = f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x2) nghịch biến trên khoảng nào trong các khoảng dưới đây:
A. ;
B. ;
C. ;
D. .
Cho hàm số y = f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x2) nghịch biến trên khoảng nào trong các khoảng dưới đây:

A. ;
B. ;
C. ;
D. .
Lời giải
Đáp án đúng là: C
Ta có: g' (x) = (1 – 2x)f '(x – x2)
Hàm số y = g(x) nghịch biến trên (a; b)
Û g' (x) ≤ 0 "x Î (a; b) và bằng 0 tạ hữu hạn điểm
Ta có: g' (1) = 3f '(–2) > 0
Do đó loại đáp án A, B, D ta chọn đáp án C.
Câu 62
Cho hàm số y = f(x) có bảng biến thiên như hình dưới:
Tìm số điểm cực trị của hàm số y = f(x2 − 4x + 1).
Cho hàm số y = f(x) có bảng biến thiên như hình dưới:

Tìm số điểm cực trị của hàm số y = f(x2 − 4x + 1).
Lời giải
Xét hàm số: y = f(x2 − 4x + 1)
y′ = g′(x) = (2x−4)f ′( x2 − 4x + 1)
Suy ra g′(x) bị đổi dấu 5 lần nên hàm số y = f(x2 − 4x + 1) có 5 điểm cực trị
Vậy hàm số y = f(x2 − 4x + 1) có 5 điểm cực trị.
Câu 63
Từ một đỉnh tháp chiều cao CD = 80 m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72º12’ và 34º26’. Ba điểm A, B, D thẳng hàng. Tính khoảng cách AB?
Từ một đỉnh tháp chiều cao CD = 80 m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72º12’ và 34º26’. Ba điểm A, B, D thẳng hàng. Tính khoảng cách AB?
Lời giải
Trong tam giác vuông CDA:
Trong tam giác vuông CDB:
AB = BD – AD = 116,7 – 25,7 = 91 (m).
Vậy khoảng cách AB là 91 m.Câu 64
Trong kì thi học sinh giỏi tỉnh có 4 bạn Phương, Dương, Hiếu, Hằng tham gia. Được hỏi quê mỗi người ở đâu ta nhận được các câu trả lời sau:
Phương: Dương ở Thăng Long còn tôi ở Quang Trung.
Dương : Tôi cũng ở Quang Trung còn Hiếu ở Thăng Long.
Hiếu : Không, tôi ở Phúc Thành còn Hằng ở Hiệp Hoà.
Hằng : Trong các câu trả lời trên đều có 1 phần đúng 1 phần sai.
Hỏi quê của Dương ở đâu?
Trong kì thi học sinh giỏi tỉnh có 4 bạn Phương, Dương, Hiếu, Hằng tham gia. Được hỏi quê mỗi người ở đâu ta nhận được các câu trả lời sau:
Phương: Dương ở Thăng Long còn tôi ở Quang Trung.
Dương : Tôi cũng ở Quang Trung còn Hiếu ở Thăng Long.
Hiếu : Không, tôi ở Phúc Thành còn Hằng ở Hiệp Hoà.
Hằng : Trong các câu trả lời trên đều có 1 phần đúng 1 phần sai.
Hỏi quê của Dương ở đâu?
Lời giải
Vì trong mỗi câu trả lời đều có 1 phần đúng và 1 phần sai nên có các trường hợp:
• Giả sử Dương ở Thăng Long là đúng thì Phương ở Quang Trung là sai.
Suy ra Dương ở Quang Trung là sai. Vậy Hiếu ở Thăng Long là đúng.
Điều này vô lý vì Dương và Hiếu cùng ở Thăng Long.
• Giả sử Dương ở Thăng Long là sai, suy ra Phương ở Quang Trung và do đó Dương ở Quang Trung là sai.
Suy ra Hiếu ở Thăng Long. Vậy Hiếu ở Phúc Thành là sai. Suy ra Hằng ở Hiệp Hòa.
Còn lại Dương ở Phúc Thành.
Vậy Dương ở Phúc Thành.
Lời giải
Gọi phương trình AB có dạng y = ax + b
Khi đó
Vậy phương trình đường thẳng AB là: y = 2x + 1.
Câu 66
Cho parabol (P): y = x2 và hai điểm A(0; 1); B(1; 3). Viết phương trình đường thẳng d song song với AB và tiếp xúc với (P).
Cho parabol (P): y = x2 và hai điểm A(0; 1); B(1; 3). Viết phương trình đường thẳng d song song với AB và tiếp xúc với (P).
Lời giải
Đường thẳng d song song với AB có dạng: y = 2x + b (b ≠ 1)
Phương trình hoành độ giao điểm của d và (P) là:
x2 = 2x + b ⇔ x2 − 2x – b = 0 (∗)
Ta có Δ’ = 1 + b.
Đường thẳng d tiếp xúc với (P) ⇔ Δ′ = 0 ⇔ 1 + b = 0 ⇔ b = −1 (tm)
Vậy đường thẳng d song song với AB và tiếp xúc với (P) là: y = 2x – 1.
Câu 67
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
y = x3 − mx2 − (m − 6)x + 1 đồng biến trên (0; 4).
Tìm tập hợp tất cả các giá trị của tham số m để hàm số:
y = x3 − mx2 − (m − 6)x + 1 đồng biến trên (0; 4).
Lời giải
Ta có y’ = 3x2 – 2mx – (m – 6)
Để hàm số đồng biến trên (0; 4)
Û y’ ≥ 0 "x Î (0; 4) và y′ = 0 tại một số giá trị hữu hạn.
3x2 − 2mx − (m − 6) ≥ 0 ∀x ∈ (0; 4)
⇔ 3x2 + 6 ≥ m(2x + 1)
Với mọi x ∈ (0; 4) ta có 2x + 1 > 0 nên
⇔ m ≤ min(0; 4) của f(x)
Xét hàm số trên (0; 4) ta có:
Xét bảng biến thiên:

Dựa vào bảng biến thiên ta thấy min(0; 4) của f(x) = f(1) = 3 Û m ≤ 3
Khi m = 3 ta có : y′ = 3x2 − 6x + 3 = 3(x − 1)2 ≥ 0 ∀x ∈ (0;4)
Vậy với m ≤ 3 thì hàm số đồng biến trên (0; 4).
Lời giải
Tập xác định: D = R
Xét đạo hàm: y′ = 3x2 + 6x = 0
Û 3x(x + 2) = 0
Tọa độ hai điểm cực trị là A(0; −4), B(−2; 0)
Khoảng cách giữa hai điểm cực trị là:
Vậy khoảng cách .
Câu 69
Biết đường thẳng y = x − 2 cắt đồ thị tại hai điểm phân biệt A, B, có hoành độ lần lượt xA; xB. Tính xA + xB .
Biết đường thẳng y = x − 2 cắt đồ thị tại hai điểm phân biệt A, B, có hoành độ lần lượt xA; xB. Tính xA + xB .
Lời giải
Phương trình hoành độ giao điểm của đường thẳng y = x − 2 và đồ thị là:
⇔ 2x + 1 = x2 − 3x + 2
⇔ x2 − 5x + 1 = 0 (∗)
Áp dụng hệ thức Viet cho phương trình (*) ta được:
Vậy xA + xB = 5.
12189 Đánh giá
50%
40%
0%
0%
0%