7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 71)
95 người thi tuần này 4.6 61.5 K lượt thi 41 câu hỏi 50 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B

Diện tích hình thang cân ABCD là \({{\rm{S}}_{{\rm{ABCD}}}} = \frac{{3{{\rm{a}}^2}\sqrt 3 }}{4}\)
Mà \({V_{S.ABC{\rm{D}}}} = \frac{{{a^3}\sqrt 3 }}{4} \Rightarrow SA = a\)
Gọi P, Q lần lượt là trung điểm của AB, BC
Suy ra PQ là đường trung bình của tam giác ABC
Do đó PQ // AC \( \Rightarrow ({\rm{SAC}})\,{\rm{//}}\,({\rm{MPQ}}){\rm{ }}\)
Do đó: \(\widehat {\left( {{\rm{MN;}}\left( {SAC} \right)} \right)} = \widehat {\left( {MN;({\rm{MPQ}})} \right)} = (\widehat {{\rm{MN}};{\rm{NH}}}) = \widehat {{\rm{MNH}}}\) với H là hình chiếu của N trên PQ
Xét tam giác SAB có P, M lần lượt là trung điểm của AB, BS
Suy ra PM là đường trung bình
Do đó PM // SA \( \Rightarrow {\rm{MP}} \bot ({\rm{ABCD}})\)
Suy ra tam giác MPN vuông tại P
Khi đó \({\rm{MN}} = \sqrt {{\rm{M}}{{\rm{P}}^2} + {\rm{N}}{{\rm{P}}^2}} = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{{3{\rm{a}}}}{2}} \right)}^2}} = \frac{{a\sqrt {10} }}{2}\) (định lý Pytago)
Ta có \({\rm{NH}} \bot {\rm{PQ}}\)
\( \Rightarrow {\rm{NH}} = \frac{3}{2}\;{\rm{d}}(\;{\rm{N}};({\rm{PQ}})) = \frac{3}{2}\;{\rm{d}}(\;{\rm{B}};({\rm{PQ}})) = \frac{3}{4}\)
Tam giác NMH vuông tại H, có \(\sin \widehat {MNH} = \frac{{NH}}{{MN}} = \frac{3}{4}:\frac{{\sqrt {10} }}{2} = \frac{{3\sqrt {10} }}{{20}}\)
Vậy ta chọn đáp án B.
Lời giải
Đáp án đúng là C

Vì ABCD là hình vuông nên AC = BD
Vì tam giác ABD vuông tại A nên \(B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}} \)
Suy ra \(AC = \sqrt {A{B^2} + A{{\rm{D}}^2}} \)
Vì tam giác AA’C’ vuông tại A’ nên \(AC' = \sqrt {AA{'^2} + A'C{'^2}} \)
Mà A’C’ = AC nên \(AC' = \sqrt {AA{'^2} + A{C^2}} \)
Hình lập phương ABCD.A’B’C’D’ có bán kính mặt cầu ngoại tiếp
\(R = \frac{1}{2}AC' = \frac{1}{2}\sqrt {A{C^2} + A'{A^2}} = \frac{1}{2}\sqrt {A{B^2} + A{D^2} + AA{'^2}} = \frac{1}{2}a\sqrt 3 \)
Diện tích mặt cầu đó là: \(S = 4\pi {R^2} = 4\pi .{\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\)
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là D
Hàm số y = ln(x3 – 3m2x + 72m) xác định trên (0; +∞)
\( \Leftrightarrow {x^3} - 3{m^2}x + 72m > 0,\forall x > 0\)
Xét hàm số \(f(x) = {x^3} - 3{m^2}x + 72m\)
Ta có
\(\begin{array}{l}f'(x) = 3{x^2} - 3{m^2}\\f'(x) = 0 \Leftrightarrow 3{x^2} - 3{m^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = m}\\{x = - m}\end{array}} \right.\end{array}\)
Với m nguyên dương ta có bảng biến thiên:

Do đó: \(f(x) > 0,\forall x > 0 \Leftrightarrow - 2{m^3} + 72m > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < - 6}\\{0 < m < 6}\end{array}} \right.\)
Vì \(m \in {\mathbb{Z}^ + } \Rightarrow m \in \{ 1;2;3;4;5\} \)
Suy ra có 5 giá trị nguyên dương của m thỏa mãn yêu cầu bài toán
Vậy ta chọn đáp án D.
1122. log3(x cawnxx 3)
Lời giải
Đáp án đúng là: C
Điều kiện: x > 0
Đặt \(t = {\rm{lo}}{{\rm{g}}_3}x = {\rm{lo}}{{\rm{g}}_2}\left( {1 + \sqrt x } \right)\) (vì \(1 + \sqrt x > 1 \Rightarrow t = {\rm{lo}}{{\rm{g}}_2}\left( {1 + \sqrt x } \right) > 0\))
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{1 + \sqrt x = {2^t}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = {3^t}}\\{x = {{\left( {{2^t} - 1} \right)}^2}}\end{array}} \right.} \right.\\ \Rightarrow {3^t} = {\left( {{2^t} - 1} \right)^2} \Leftrightarrow {3^t} = {4^t} - {2.2^t} + 1\end{array}\)
\(\begin{array}{l} \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} = 1 - 2.{\left( {\frac{1}{2}} \right)^t} + {\left( {\frac{1}{4}} \right)^t}\\ \Leftrightarrow {\left( {\frac{3}{4}} \right)^t} + 2 \cdot {\left( {\frac{1}{2}} \right)^t} - {\left( {\frac{1}{4}} \right)^t} = 1\end{array}\)
Xét hàm số \(f\left( t \right) = {\left( {\frac{3}{4}} \right)^t} + 2 - {\left( {\frac{1}{4}} \right)^t}\) trên (0; +∞) có:
\(\begin{array}{l}f'\left( t \right) = {\left( {\frac{3}{4}} \right)^t}{\rm{ln}}\frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}{\rm{ln}}\frac{1}{2} - {\left( {\frac{1}{4}} \right)^t}{\rm{ln}}\frac{1}{4}\\ = {\left( {\frac{3}{4}} \right)^t}{\rm{ln}}\frac{3}{4} + 2{\left( {\frac{1}{2}} \right)^t}{\rm{ln}}\frac{1}{2} + 2 \cdot {\left( {\frac{1}{4}} \right)^t}{\rm{ln}}\frac{1}{2}\end{array}\)
Mà \({\rm{ln}}\frac{3}{4} < 0,{\rm{ln}}\frac{1}{2} < 0\) nên f’(t) < 0; ∀ t > 0
Do đó hàm số f(t) nghịch biến trên (0; +∞)
Dễ thấy f(2) = 1 nên phương trình f(t) = 1 có nghiệm duy nhất t = 2
Suy ra \({\rm{lo}}{{\rm{g}}_3}x = 2 \Leftrightarrow x = 9\)
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là: B
Vì \({x^2} + 4{y^2} = 12xy\) nên \({(x + 2y)^2} = 16xy\) hay \({\log _2}{(x + 2y)^2} = {\log _2}16xy\)
Do đó: \(2{\log _2}(x + 2y) = 4 + {\log _2}x + {\log _2}y\)
Suy ra \(\log 2\left( {x + 2y} \right) = 2 + \frac{1}{2}\left( {{{\log }_2}x + {{\log }_2}y} \right)\)
Vậy ta chọn đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12304 Đánh giá
50%
40%
0%
0%
0%