Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
30565 lượt thi 52 câu hỏi 60 phút
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Câu 7:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 8:
Câu 9:
Câu 10:
Cho biểu thức \[P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}}\].
a) Tìm x nguyên để P nhận giá trị nguyên.
b) Tìm x sao cho P > 1.
Câu 11:
Câu 12:
Câu 13:
Câu 14:
Đơn giản biểu thức sau khi bỏ ngoặc:
a) –a – (b – a – c);
b) – (a – c) – (a – b + c);
c) b – (b + a – c);
d) –(a – b + c) – (a + b + c);
e) (a + b) – (a – b) + (a – c) – (a + c);
g) (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c).
Câu 15:
Đơn giản biểu thức sau khi bỏ dấu ngoặc:
a) (a + b – c) – (b – c + d);
b) –(a – b + c) + (a – b + d);
c) (a + b) – (–a + b – c);
d) –(a + b) + (a + b + c);
e) (a – b + c) – (a – b + c);
f) –(a – b – c) + (a – b – c).
Câu 16:
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
Câu 17:
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Câu 18:
Câu 19:
Tìm x biết:
a) (x – 5).(x + 4) = 0;
b) x2 – 7x = 0;
c) x2 = –5x;
d) x3 = x;
e) (x – 5).(x – 4) = 0.
Câu 20:
Câu 21:
Câu 22:
Câu 23:
Câu 24:
Câu 25:
Câu 26:
Câu 27:
Câu 28:
Câu 29:
Câu 30:
Câu 31:
Cho \(Q = \left( {\frac{1}{{x - 4}} - \frac{1}{{x + 4\sqrt x + 4}}} \right).\frac{{x + 2\sqrt x }}{{\sqrt x }}\).
a) Tìm điều kiện xác định của biểu thức Q.
b) Rút gọn Q.
Câu 32:
Câu 33:
Câu 34:
Câu 35:
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Câu 36:
Câu 37:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 38:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 39:
Câu 40:
Câu 41:
Câu 42:
Câu 43:
Câu 44:
Câu 45:
Câu 46:
Câu 47:
Câu 48:
Câu 49:
Câu 50:
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức:
a) A = cos4x – cos2x + sin2x;
b) B = sin4x – sin2x + cos2x.
Câu 51:
Câu 52:
Cho các đa thức sau: A = x3 + 4x2 + 3x – 7 và B = x + 4.
a) Tính A : B.
b) Tìm x ∈ ℤ sao cho A chia hết cho B.
6113 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com