🔥 Đề thi HOT:

2867 người thi tuần này

5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)

62.5 K lượt thi 126 câu hỏi
1379 người thi tuần này

80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)

14 K lượt thi 20 câu hỏi
1374 người thi tuần này

80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)

13.1 K lượt thi 20 câu hỏi
1042 người thi tuần này

15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)

9.8 K lượt thi 15 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Điều kiện: x ¹ y

\[\left\{ {\begin{array}{*{20}{c}}{{{(x + y)}^2}\left( {8{x^2} + 8{y^2} + 4xy - 13} \right) + 5 = 0}\\{2x + \frac{1}{{x + y}} = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{8{x^2} + 8{y^2} + 4xy - 13 + \frac{5}{{{{(x + y)}^2}}} = 0\,}\\{x + y + \frac{1}{{x + y}} + x - y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5\left( {{x^2} + 2xy + {y^2}} \right) + 3\left( {{x^2} - 2xy + {y^2}} \right) + \frac{5}{{{{(x + y)}^2}}} = 13}\\{x + y + \frac{1}{{x + y}} + x - y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{{\left( {x + y} \right)}^2} + \frac{5}{{{{(x + y)}^2}}} + 3{{\left( {x - y} \right)}^2} = 13}\\{x + y + \frac{1}{{x + y}} + x - y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{{\left( {x + y + \frac{1}{{x + y}}} \right)}^2} + 3{{\left( {x - y} \right)}^2} = 23}\\{x + y + \frac{1}{{x + y}} + x - y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

Đặt \[x + y + \frac{1}{{x + y}} = a;\,\,\,x - y = b\,\,\,\,\,\,\]

Ta có: \[\left( {\frac{{ - 5}}{4};\,\frac{9}{4}} \right)\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{a^2} - 6a + 3 = 23}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{8{a^2} - 6a - 20 = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(a - 2)(4a + 5) = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{4}}\\{b = \frac{9}{4}}\end{array}} \right.}\end{array}} \right.\]

Với \[\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 1}\end{array}} \right.\], ta có:

\[\left\{ {\begin{array}{*{20}{c}}{x + y + \frac{1}{{x + y}} = 2}\\{x - y = - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {x + y} \right)}^2} - 2(x + y) + 1 = 0}\\{x - y = - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(x + y - 1)}^2} = 0}\\{x - y = - 1\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 1}\end{array}} \right.\]

Với \[\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{4}}\\{b = \frac{9}{4}}\end{array}} \right.\], ta có:

\[\left\{ {\begin{array}{*{20}{c}}{x + y + \frac{1}{{x + y}} = \frac{{ - 5}}{4}}\\{x - y = \frac{9}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {x + y + \frac{5}{8}} \right)}^2} + \frac{{39}}{{64}} = 0}\\{x - y = \frac{9}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]   (2)

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {x + y} \right)}^2} + 2 \cdot \frac{5}{8}(x + y) + \frac{{25}}{{64}} + \frac{{39}}{{64}} = 0}\\{x - y = \frac{9}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {x + y + \frac{5}{8}} \right)}^2} + \frac{{39}}{{64}} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x - y = \frac{9}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[{\left( {x + y + \frac{5}{8}} \right)^2} + \frac{{39}}{{64}} > 0,\,\,\forall m\] nên không có giá trị m thoả mãn hệ phương trình (2)

Vậy nghiệm (x; y) của hệ phương trình là (0; 1).

Lời giải

\[\left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{b^2} = 23}\\{a + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{{(1 - a)}^2} = 23}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5{a^2} + 3{a^2} - 6a + 3 = 23}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{8{a^2} - 6a - 20 = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(a - 2)(4a + 5) = 0}\\{b = 1 - a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{4}}\\{b = \frac{9}{4}}\end{array}} \right.}\end{array}} \right.\]

Vậy các nghiệm (a; b) của hệ phương trình là: (2; 1) và \[\left( {\frac{{ - 5}}{4};\,\frac{9}{4}} \right)\].

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD (ảnh 1)

S là điểm chung của (SAB) và (SCD).

Kẻ Sx // AB // CD

Ta có: AB // CD

AB (SAB)

CD (SCD)

Suy ra (SAB) ∩ (SCD) = {Sx}

Vậy giao tuyến của hai mặt phẳng (SAB) và (SCD) là Sx.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD (ảnh 1)

Ta có: AM (SAC)

Dễ thấy S (SAC) ∩ (SBD)

Gọi O là giao điểm của AC và BD

Khi đó O AC (SAC),

O BD (SBD)

Do đó O (SAC) ∩ (SBD)

Þ SO = (SAC) ∩ (SBD)

Trong (SAC) gọi AM ∩ SO = {K} 

Ta có: K AM, K SO (SBD) 

Þ AM ∩ (SBD) = {K},

Vậy giao điểm K của đường thẳng AM với (SBD) là giao điểm của AM và SO.

Lời giải

Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với  (ảnh 1)

Áp dụng công thức \[r = \frac{{3V}}{{{S_{tp}}}}\,\,\] (*) và tam giác đều cạnh x có diện tích \[S = \frac{{{x^2}\sqrt 3 }}{4}\,\,\]

Từ giả thiết S.ABC đều có SA = SB = SC. Lại có SA, SB, SC đôi một vuông góc và thể tích khối chóp S.ABC bằng \[\frac{{{a^3}}}{6}\]nên ta có SA = SB = SC = a.

Suy ra \[AB = BC = CA = a\sqrt 2 \] và tam giác ABC đều cạnh có độ dài \[a\sqrt 2 \]. Do đó diện tích toàn phần của khối chóp S.ABC là

Stp  = SSAB + SSBC + SSCA + SABC

\[ = \frac{{3{a^2}}}{2} + \frac{{{{\left( {a\sqrt 2 } \right)}^2}.\sqrt 3 }}{4} = \frac{{{a^2}\left( {3 + \sqrt 3 } \right)}}{2}\] 

Thay vào (*) ta được: \[\frac{{4\pi }}{3}\].

Vậy r = \[r = \frac{a}{{3 + \sqrt 3 }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 41

Tìm tập hợp bội của 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 57

Cho hàm số: y = x-4. Tìm khẳng định sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

12016 Đánh giá

50%

40%

0%

0%

0%