5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 70)
27 người thi tuần này 4.6 49.4 K lượt thi 46 câu hỏi 60 phút
Cho x, y, z > 0. Chứng minh bất đẳng thức 1x+1y+1z≥9x+y+z1x+1y+1z≥9x+y+z.
Áp dụng bất đẳng thức Cauchy cho 3 số x, y, z > 0, ta được: x+y+z≥33√xyzx+y+z≥33√xyz.
Áp dụng bất đẳng thức Cauchy cho 3 số 1x;1y;1z>01x;1y;1z>0, ta được:
1x+1y+1z≥33√1xyz=33√xyz1x+1y+1z≥33√1xyz=33√xyz.
Khi đó ta có (x+y+z)(1x+1y+1z)≥33√xyz.33√xyz=9(x+y+z)(1x+1y+1z)≥33√xyz.33√xyz=9.
⇔1x+1y+1z≥9x+y+z⇔1x+1y+1z≥9x+y+z.
Dấu “=” xảy ra khi và chỉ khi x = y = z.
Vậy ta có điều phải chứng minh.
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 27:
Chứng minh rằng nếu p là một số nguyên tố thì np – n chia hết cho p với mọi số nguyên dương n.
Chứng minh rằng nếu p là một số nguyên tố thì np – n chia hết cho p với mọi số nguyên dương n.
Câu 35:
Cho đường thẳng d: x – 2y – 1 = 0. Ảnh của d qua phép tịnh tiến theo →v=(1;2) là đường thẳng:
Cho đường thẳng d: x – 2y – 1 = 0. Ảnh của d qua phép tịnh tiến theo →v=(1;2) là đường thẳng:
Câu 38:
Cho ba số dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức P=1x+y+1y+z+1z+x.
Cho ba số dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức P=1x+y+1y+z+1z+x.
Câu 44:
Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
9883 Đánh giá
50%
40%
0%
0%
0%