🔥 Đề thi HOT:

2867 người thi tuần này

5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)

62.5 K lượt thi 126 câu hỏi
1379 người thi tuần này

80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)

14 K lượt thi 20 câu hỏi
1374 người thi tuần này

80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)

13.1 K lượt thi 20 câu hỏi
1042 người thi tuần này

15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)

9.8 K lượt thi 15 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Lời giải

Media VietJack

a) y = x + 4 (d).

• Với x = 0 Þ y = 4;

• Với y = 0 Þ x = −4.

Vậy đồ thị hàm số (d): y = x + 4 đi qua hai điểm A(0; 4) và B(−4; 0).

b) Ta có OA = 4 và OB = 4.

Do đó, diện tích của ∆AOB là: \({S_{OAB}} = \frac{1}{2}.4.4 = 8\;\left( {c{m^2}} \right)\).

Lời giải

Lời giải

a) Để đồ thị hàm số (1) song song với đường thắng y = −x + 1 thì
m − 1 = −1 Û m = 0.

b) Hoành độ giao điểm của đường thắng y =13x , đường thẳng y =0,5x1,5 là nghiệm của phương trình:

13x =0,5x1,5

Û 3x − 0,5x = 1 + 1,5

Û 2,5x = 2,5

Û x = 1

Với x = 1 Þ y = 1 − 3.1 = −2.

Vậy hai đường thẳng y =13x và y =0,5x1,5 cắt nhau tại điểm M(1; −2).

Để đường thắng y =13x , đường thẳng y =0,5x1,5 và đồ thị hàm số (1) cùng đi qua một điểm thì đồ thị hàm số (1) phải đi qua điểm M.

Suy ra −2 = (m1).1 + 3

Û −2 = (m1) + 3 Û m = −4.

Lời giải

Lời giải

a) Với m = 0 Þ y = − x − 3

Ta lập bảng:

x

0

−3

y

−3

0

Hàm số y = − x − 3 đi qua hai điểm M(0; −3) và N(−3; 0).

Media VietJack

b) (d) cắt trục tung tại điểm có tung độ bằng 1

Þ 1 = (m − 1).0 + m − 3

Û 1 = m − 3

Û m = 4.

Vậy m = 4 thì (d) cắt trục tung tại điểm có tung độ bằng 1.

c) Vì A là giao điểm của (d) với trục Ox nên yA = 0.

Khi đó (m1)xA + m3 = 0

\[ \Leftrightarrow {x_A} = - \frac{{m - 3}}{{m - 1}}\]

\( \Rightarrow OA = \left| { - \frac{{m - 3}}{{m - 1}}} \right|\;\left( {m \ne 1} \right)\)

B là giao điểm của (d) vưới trục Oy nên xB = 0

Khi đó yB = (m1).0 + m3 = m − 3

\[ \Rightarrow OB = \left| {m - 3} \right|\]

Để tam giác OAB cân tại O thì OA = OB

\[ \Leftrightarrow \left| { - \frac{{m - 3}}{{m - 1}}} \right| = \left| {m - 3} \right|\]

+) TH1:

\[ - \frac{{m - 3}}{{m - 1}} = m - 3\]

\( \Rightarrow \left( {m - 3} \right)\left( {m - 1} \right) = - \left( {m - 3} \right)\)

\[ \Leftrightarrow \left( {m - 3} \right)\left( {m - 1} \right) + \left( {m - 3} \right) = 0\]

Û m(m − 3) = 0

\[ \Rightarrow \left[ \begin{array}{l}m = 0\;\left( {TM} \right)\\m = 3\;\left( {TM} \right)\end{array} \right.\]

+) TH2:

\[ - \frac{{m - 3}}{{m - 1}} = - \left( {m - 3} \right)\]

\( \Rightarrow \left( {m - 3} \right)\left( {m - 1} \right) = \left( {m - 3} \right)\)

\[ \Leftrightarrow \left( {m - 3} \right)\left( {m - 1} \right) - \left( {m - 3} \right) = 0\]

Û (m − 2)(m − 3) = 0

\[ \Rightarrow \left[ \begin{array}{l}m = 2\;\left( {TM} \right)\\m = 3\;\left( {TM} \right)\end{array} \right.\]

Vậy các giá trị của m thỏa mãn là m = 1; m = 2; m = 3.

Lời giải

Lời giải

Media VietJack

a) Tứ giác BEFI có: \[\widehat {BIF} = 90^\circ \] (giả thiết)

Suy ra I thuộc đường tròn đường kính BF.

\[\widehat {BEF} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn)

Nên E thuộc đường tròn đường kính BF

Þ BEFI nội tiếp đường tròn đường kính BF.

b) AB ^ CD

• Xét ∆OCD cân có OI là đường cao nên cũng là đường trung tuyến, nên I là trung điểm của CD.

• Xét ∆ACD có AI vừa là đường cao vừa là đường trung tuyến nên ∆ACD cân tại đỉnh A nên AC = AD

Þ \(\widehat {ACF} = \widehat {AEC}\) (hai góc nội tiếp chắn hai cung bằng nhau)

Xét ∆ACF và ∆AEC có:

\(\widehat A\) chung

\(\widehat {ACF} = \widehat {AEC}\) (cmt)

Þ ∆ACF ∆AEC (g.g)

\[ \Rightarrow \frac{{AC}}{{AE}} = \frac{{AF}}{{AC}}\] (hai cạnh tương ứng tỉ lệ)

Þ AE . AF = AC2

c) \(\widehat {ACF} = \widehat {AEC}\) Þ AC là tiếp tuyến đường tròn ngoại tiếp ∆CEF (1)

Mặt khác \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Þ AC ^ CB (2)

Từ (1) và (2) suy ra CB chứa đường kính đường tròn ngoại tiếp ∆CEF

Mà CB cố định nên tâm đường tròn ngoại tiếp ∆CEF thuộc CB cố định khi E thay đổi trên cung nhỏ BC.

Lời giải

Lời giải

Media VietJack

a) Xét ∆SMA và ∆SBC có:

\[\widehat S\] chung

\(\widehat {SAM} = \widehat {SCB}\) (Hai góc nội tiếp cùng chắn cung MB của (O))

Þ ∆SMA ∆SBC (g.g)

b) Do CD ^ AB (giả thiết)

Þ AB là đường trung trực của CD (mối liên hệ giữa đường kính và dây cung)

Þ AC = AD (tính chất đường trung trực)

 (hai dây bằng nhau căng hai cung bằng nhau)

\( \Rightarrow \widehat {AMD} = \widehat {ABC}\) (góc nội tiếp cùng chắn hai cung bằng nhau)

\( \Rightarrow \widehat {KBH} = \widehat {KMH}\).

Mà hai góc này cùng nhìn cạnh KH nên suy ra BMHK nội tiếp.

c) Kẻ đường kính MN

Xét ∆AON và ∆BOM có:

OA = OB = R

\(\widehat {AON} = \widehat {BOM}\)

ON = OM = R

Þ ∆AON = ∆BOM (c.g.c)

Þ AN = BM (hai cạnh tương ứng bằng nhau)

 (hai dây bằng nhau căng hai cung bằng nhau)

Ta có:

 (tính chất góc có đỉnh nằm ngoài đường tròn) (1)

 (tính chất góc nội tiếp)

Media VietJack (2)

Media VietJack (3)

Media VietJack (4)

Từ (1), (2), (3) và (4) suy ra \(\widehat {ASC} = \widehat {NMD}\) hay \[\widehat {OMK} = \widehat {OSM}\]

Xét ∆OKM và ∆OMS có:

\(\widehat {MOS}\) chung

\[\widehat {OMK} = \widehat {OSM}\] (cmt)

Þ ∆OKM ∆OMS (g.g)

\( \Rightarrow \frac{{OK}}{{OM}} = \frac{{OM}}{{OS}}\) (hai cạnh tương ứng tỉ lệ)

Þ OK.OS = OM2 = R2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tổng số đo các góc của đa giác đều 9 cạnh là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Xác định hàm số bậc hai thỏa mãn điều kiện.

a) Cho (P): y = ax2 + bx + c. Tìm a, b, c biết (P) đi qua điểm A(1; 2) và có đỉnh I(−1; −2).

b) Tìm hàm số y = ax2 + bx − 3 biết đồ thị có tọa độ đỉnh là \(I\left( {\frac{1}{2};\; - 5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 27

Cho tam giác ABC đều tâm O. M là điểm tùy ý trong tam giác. MD, ME, MF tương ứng vuông góc với BC, CA, AB. Chọn khẳng định đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 61

Phương trình \({x^3} - 12x + m - 2 = 0\) có 3 nghiệm phân biệt với m:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

12016 Đánh giá

50%

40%

0%

0%

0%